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We propose a new approach to the complete retrieval of a coherent field (amplitude and phase) using the same
hardware configuration as a Shack–Hartmann sensor but with twomodifications: first, we add a transversally shifted
measurement to resolve ambiguities in the measured phase; and second, we employ factored form descent (FFD), an
inverse algorithm for coherence retrieval, with a hard rank constraint. We verified the proposed approach using both
numerical simulations and experiments. © 2014 Optical Society of America
OCIS codes: (100.5070) Phase retrieval; (010.7350) Wave-front sensing; (100.3190) Inverse problems.
http://dx.doi.org/10.1364/OL.39.006177

Knowledge of the phase of a coherent field has many
applications in optics and imaging, but at optical frequen-
cies and above, phase can only be inferred through
intensity measurements. Hence, many methods have
been developed to shape the intensity for phase retrieval,
e.g., holography [1–6], wavefront sensing with lens arrays
[7–11], iterative projections [12,13], transport-of-intensity
equation (TIE) methods [14,15], ptychography [16–18],
and quantitative differential interference contrast (DIC)
imaging [19]. Recent lens array imaging papers [9–11]
adopt iterative algorithms instead of classic centroid-
based reconstruction to exploit the additional informa-
tion contained in the structure of the intensity behind
each lenslet. However, they still impose strong restric-
tions on the field—while centroid-based reconstruction
methods assume an extremely smooth phase profile,
these iterative methods employ smooth basis functions
with large spatial support (i.e., Zernike polynomials
and vortex modes). Without these restrictions, straight-
forward inversion can yield spurious phase discontinu-
ities at lenslet boundaries due to noise, since a single
wavefront sensor image lacks information on the relative
phase of portions of the field captured by different
lenslets [11].
We instead propose taking a second measurement

after transversally shifting the lens array diagonally so
that lenslet centers in one image coincide with lenslet
corners in the other. Nearby points in the field from
adjacent lenslets in the first image now fall within the
same lenslet in the second, their interference yielding
information on their relative phase. This additional infor-
mation relaxes restrictions on the field, enabling the use
of arbitrary basis functions. For versatility and computa-
tional convenience, we will use sinc basis functions
corresponding to Nyquist sampling with a square sam-
pling lattice.
Our actual inversion algorithm retrieves the phase and

amplitude of the coherent field from this set of wavefront
sensor images. It is based on factored form descent (FFD)
[20], a coherence retrieval algorithm that computes the

coherence modes of a partially coherent field given a
linear operator description of a known optical system
and measured intensity values through said optical sys-
tem. We adapt FFD to the problem of coherent field
retrieval by imposing a hard rank constraint; this is ac-
complished by modifying the merit function to allow only
a single mode:

f̂ �x� �
XM

m�1

σ−2m �ym − kHmxxHkm�2; (1)

where M is the number of measured intensities, σm is an
estimate of the noise standard deviation, ym is the mth
measurement, km models the linear propagation of light
from the source to the measurement position, and x ∈
CN is the current guess to the source field. The only differ-
ence between this formulation and classic FFD is that we
replaced modes matrix X with a single mode vector x.
This also reduces the per-iteration computational com-
plexity to O�MN� since we only deal with a single mode
instead of N of them.

Although the original FFD algorithm is a modification
of a convex problem and hence has no local minima, the
rank constraint modification does introduce the possibil-
ity of local minima. The true solution, being coherent, lies
on the surface of the positive semi-definite cone in mu-
tual intensity space, and the rank constraint forces the
iterate to move along this surface; local minima exist
when the steepest descent direction in mutual intensity
space is normal to the surface. However, we have found
that the modified algorithm presented here produces re-
liable inversion in practice given enough measurements
and a good initial guess. With enough measurements, lo-
cal minima only exist on the “opposite” side of the cone
from the true solution. However, if the iterate starts on
the “same” side of the cone, then it has no reason to land
in a local minimum at the other side. A deeper study of
convergence behavior is beyond the scope of this Letter,
especially since the representative cases we studied
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yielded plausible solutions with the proposed measure-
ment method and a flat field initial guess.
We first apply our method to recover the amplitude

and phase of a simulated Hypergeometric-Gaussian
(HyGG) mode [21] with parameters p � −5 and m � 6;
its structural simplicity and presence of a phase vortex
make it easy to verify our approach for a nontrivial
yet intuitive example. The HyGGmode we simulate takes
the following form:

UHyGG�r;ϕ� � �r∕w0� exp�−r2∕w2
0 � j6ϕ�; (2)

where r and ϕ are, respectively, the radial and angular
spatial coordinates, w0 � 300 μm is a constant determin-
ing the extent of the mode, and j �

������
−1

p
. The amplitude

and phase of this mode are shown in Fig. 1, and we used a
wavelength of 540 nm. In our simulation, this field is im-
pinging on a wavefront sensor consisting of a lens array
containing square lenslets 150 μm on a side with a 5.1 mm
focal length and an imaging sensor with 500 × 500 pixels
of 4.65 μm pitch. Two sets of images are taken with the
simulated wavefront sensor, with the second set of im-
ages taken after the wavefront sensor is shifted 75 μm
along each axis of the lens array lattice.
Each set contains 16 noisy images incorporating both

Gaussian noise (with standard deviation equal to 0.5% of
the brightest pixel) and Poisson noise (to emulate 5 × 105

total captured photons). The mean and standard
deviation of each set are used as input to the modified
FFD algorithm, and the recovered amplitude and phase
after 500 iterations (∼30 min on a modern laptop run-
ning MATLAB) are shown in Fig. 2, with convergence

plots shown in Fig. 3. The field was specified by a 129 ×
129 lattice with 18.6 μm spacing.

The results show successful reconstruction of the
phase vortex where the amplitude is not nearly zero.
The reconstructed vortex is slightly rotated compared
to the ground-truth due to a constant phase shift. Since
there is no separate reference wave, constant phase
shifts are not measurable and hold no semantic meaning,
and hence they can be ignored in practical applications.
The amplitude reconstruction is noisier but does capture
the overall shape. It is worth noting that 2π phase discon-
tinuities in phase vortices make reconstruction from
wavefront sensor images a hard problem; specialized
wavefront sensing reconstruction algorithms [22,23] or
prior knowledge about the field [11] is usually required,
whereas our approach made no assumptions about
the field.

To verify our reconstruction method experimentally,
we chose to image a 50 μm polystyrene bead embedded
in ethylene glycol through an infinity-corrected micro-
scope with an Olympus 40×∕0.75NA microscope objec-
tive. Light from a light emitting diode (LED) illuminated
the specimen after passing through a 540-nm-bandpass
filter of 10-nm-bandwidth, and both field and aperture
stops in the microscope were fully stopped down to sim-
ulate coherent illumination. A Thorlabs WFS150-7AR
wavefront sensor with 150 μm circular lenslets was
placed at the intermediate image plane, and 1000 ×
1000 pixels were taken from each image. The wavefront
sensor was placed on a manual stage to enable taking

Fig. 1. Amplitude and phase of a simulated HyGGmode. White
in the amplitude image corresponds to the maximum amplitude,
whereas black and white correspond to −π and π, respectively,
in the phase image. Scale bar is 0.5 mm.

Fig. 2. Recovered amplitude and phase of the HyGG mode
from a set of wavefront sensor images emulating a total photon
count of 5 × 105. White in the amplitude image corresponds to
the maximum amplitude of the ground-truth, whereas black and
white correspond to −π and π, respectively, in the phase image.
Scale bar is 0.5 mm.
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Fig. 3. Top log–log plot shows the merit function value as a
function of iteration number, and the bottom log–log plot shows
the iteration-wise progression of the RMS error in mutual inten-
sity between the current iterate and the original HyGG mode.
The somewhat erratic behavior of the RMS error is due to ill-
posedness and can be ameliorated by preconditioning (i.e.,
modifying the gradient update rule). We have chosen to defer
this improvement to future work, since the current simple
method still seems to work quite well in the representative
situations that we examined.
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images at two positions, with a transverse translation of
75 μm along each axis of the lens array lattice between
the two.
First, a set of 16 images with the illumination turned off

were captured to calibrate the black level. Then, for each
stage position, 16 images were captured to obtain a mean
and variance; black level calibration was done by
subtracting the black level mean from the captured mean
and adding the black level variance to the captured
variance (to account for noise in the black level measure-
ments). These two sets of means and variances were then
used as input to our modified FFD. To properly simulate
the optical system and account for illumination nonuni-
formities, a similar set of images were captured of a
blank slide, their reconstruction result used as a mask
in the forward model for the actual specimen. Both
reconstructions were run for 1000 iterations, with field
specified by a 330 × 330 lattice with 358-nm spacing.
The recovered amplitude and phase are shown in Fig. 4;
phase unwrapping was performed using the Constantini
method [24]. A plot of the merit function value shows
convergence within 1000 iterations in Fig. 5.

The amplitude and phase images show that the shape
of the bead was reconstructed with good fidelity,
although there are several artifacts present. The periodic
artifacts in the amplitude image are likely due to
misalignment of the wavefront sensor as well as mischar-
acterization of the aberrations in the lenslets. Further-
more, there appear to be artifacts along the edge of
the sphere, most prominently seen in the amplitude im-
age. Since the lens array has a focal length of approxi-
mately 5.1 mm, the maximum NA at 40× that the lens
array can accommodate without crosstalk across lenslets
is approximately 75∕5100 × 40 ≈ 0.59, which is smaller
than the 0.75 NA of the objective used. Thus, these errors
are most likely due to cross talk.

A cross-section of the unwrapped optical path length is
shown in the bottom graph in Fig. 4. For comparison, the
optical thickness of an ideal bead (with 1.59 and 1.44
used as the index of refraction for polystyrene and ethyl-
ene glycol, respectively) is shown as a dashed curve,
truncated such that the wavefront curvature does not
exceed the NA of the objective. The reconstruction
matches the comparison curve quite well, and slight
differences between the two curves may be due to
diffraction or inaccurate index of refraction values for
the comparison curve.

A human cheek cell was imaged similarly, with the
field represented as a 222 × 222 lattice with 464 nm spac-
ing. The resulting amplitude and phase are shown in
Fig. 6, and a convergence plot is shown in Fig. 7. The
optically thicker nucleus is clearly visible, although some
small diagonally oriented artifacts are present.

It is worth noting that the mathematical form of the
forward problem in our formulation is quite similar to
ptychography—for a flat amplitude-phase specimen,
the image formed by a single wavefront sensor lenslet
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Fig. 4. Recovered amplitude and unwrapped phase of a 50 μm
polystyrene bead embedded in ethylene glycol. Lighter shading
corresponds to higher amplitude and optical path length. Scale
bar is 50 μm. The solid curve in the bottom graph shows a cross-
section (along the dotted line in the phase image) of the un-
wrapped optical path length, whereas the dashed curve shows
the expected optical path length.
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Fig. 5. Log–log plot of the merit function value as a function of
iteration number shows convergence within 1000 iterations for
the 50 μm bead specimen.
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Fig. 6. Recovered amplitude and unwrapped phase of a
cheek cell placed between two cover slips. Lighter shading
corresponds to higher amplitude and optical path length. Scale
bar is 25 μm.
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Fig. 7. Log–log plot of the merit function value as a function of
iteration number shows convergence within 1000 iterations for
the cheek cell specimen.
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provides the same information as the far field of a probe
beam with the same shape and position as the lenslet.
As we increase the number of shifted images, our mea-
surement data quite obviously become exactly ptychog-
raphy; we require less scanning, albeit at the cost of
having to deal with crosstalk and additional calibration.
Increasing the number of shifts also generates more re-
dundancy in the reconstruction (at the limit, the problem
becomes the recovery of a two-dimensional data set from
a four-dimensional set of measurements), making the
problem less ill-posed at the cost of less light per mea-
surement, assuming a fixed photon budget. A more
thorough study into this trade-off could lead to practical
guidelines regarding the optimum number of shifts. Fur-
thermore, due to the mathematical similarity between
wavefront sensing and ptychography, it would be worth
investigating the use of modified FFD to process ptycho-
graphic data, or even data from other phase imaging
methods such as TIE. Lastly, since the wavefront sensor
images a smoothed Wigner distribution [25,26], it might
be promising to use FFD to recover partially coherent
fields from wavefront sensor data.

This research was supported by the National Research
Foundation Singapore, through the Singapore-MIT
Alliance for Research and Technology (SMART) Centre’s
BioSyM and CENSAM IRG research programs.
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