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mutual intensity of a Schell-model source from both simulated data and
experimental measurements.
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21. K.-H. Brenner, A. W. Lohmann, and J. Ojeda-Castañeda, “The ambiguity function as a polar display of the OTF,”

Opt. Commun. 44, 323–326 (1983).

1. Coherence retrieval

The mutual intensity function [1] for a stationary quasi-monochromatic partially coherent field
contains all of the information needed to predict the time-averaged intensity at any point in the
field after it has passed through any known first order optical system. Thus, its measurement
enables many applications in modeling, simulation and imaging. While the mutual intensity
function cannot be measured directly, its reconstruction can be posed as an inverse problem
– compute the mutual intensity function from a suitable number of time-averaged intensity
measurements of the field after it has passed through one or more known first order optical sys-
tems. This process of retrieving the mutual intensity of a partially coherent field from intensity
measurements is known as coherence retrieval [2].

In this process, partially coherent light is passed through one or more known first order op-
tical systems, and the resulting light intensities provide information about, and thus constraints
on, the state of coherence of the original partially coherent field. The best known coherence
retrieval methods are based on phase-space tomography [2–6], although other methods do ex-
ist, such as the direct measurement of the far field intensities of two pinholes [7], the imaging
of optically-produced Wigner distribution for one-dimensional fields [8, 9], spectrogram-based
methods [10] and others [11–13].

Not only are there many measurement methods for retrieving the necessary information to
determine the state of coherence, there are also many different algorithms that reconstruct
the state of coherence from these measurements. In this paper, we instead propose a simpler
yet more versatile convex mathematical formulation and a principled solution method. Our
measurement method-agnostic formulation is a constrained weighted least-squares problem
based on physical first principles, and it exploits the inherent positivity of the mutual intensity.
We also use this positivity in designing a practical solution method.

Unlike iterated projections algorithms [5], our formulation is convex and therefore does not
suffer from potential local minima problems found when projecting onto consecutive non-
convex sets. Unlike methods based on Fourier space gridding or inverse Radon transforms [3,4],
we take advantage of the positivity of the mutual intensity matrix in a principled way, without
the use of ad-hoc regularizers or additional projections [6]. Lastly, the flexibility of our for-
mulation and solution method allows for every single intensity measurement to be weighted
differently and removes the need for measurements to be incorporated an entire plane at a time.

We will now describe our formulation in more detail by first making some common assump-
tions about the partially coherent field to be measured: (a) it is quasi-monochromatic, (b) it has
no evanescent components, and (c) it has negligible intensity outside a finite region in the plane.

Assumption (a) indicates that the mutual intensity function is sufficient to fully describe
the partially coherent field; otherwise, the full mutual coherence function would be needed.
Furthermore, this assumption places a lower bound on the wavelengths present in the field. This
lower bound, along with assumption (b), imposes a spatial band-limit on the field. This band-
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limit and assumption (c) enables accurate modeling of the continuous mutual intensity function
using a finite number of samples. In other words, the partially coherent field in question can be
accurately described using a mutual intensity matrix, a discretized form of the mutual intensity
function where the two spatial variables are replaced by row and column indexes corresponding
to spatial sample locations [14, 15]. Furthermore, let us adopt a Gaussian noise model for the
intensity measurements, since it can be adapted to approximately model various sources of
noise in intensity measurements, including photon shot noise, sensor read-out noise, thermal
noise and quantization.

With these assumptions and models in mind, we can formulate the coherence retrieval prob-
lem as the following convex problem on mutual intensity matrices J:

Problem 1.
minimize f (J) = ∑M

m=1 σ−2
m

(
ym −km

HJkm
)2

subject to J � 0

where:

• J is a Hermitian N ×N matrix.

• N is the number of spatial samples in the mutual intensity.

• M is the number of intensity measurements.

• ym is the mth intensity measurement.

• σm is the standard deviation of the additive Gaussian noise source for the mth intensity
measurement.

• km is a vector describing propagation from the original plane where J is sought to the
location where ym is measured. Let K be the N ×M matrix whose columns are km; this
matrix is the discretized version of the transmission function K(P,Q) used for propagat-
ing the mutual intensity [1].

This formulation is a constrained least-squares problem with a quadratic merit function over
the space of positive semi-definite matrices of size N ×N. Being convex, the problem has
a single globally optimal point at best and a contiguous globally optimal set at worst. In other
words, no suboptimal local minima exist for this generalized formulation of coherence retrieval.

The naive approach to this convex program is to use a generic interior point method with
barrier functions [16]. However, the inner loop second-order solver requires the inversion of a
Hessian, which results on the order of O(N6) operations per iteration at the worst and O(N4)
operations per iteration at best. Furthermore, even with optimizations such as quasi-Newton
methods, storage comparable to that of a Hessian is still required, which in this case would be
of size O(N4), making such an approach not scalable for large mutual intensity matrices. Since
coherence retrieval isn’t a generic quadratic programming problem, one would expect that its
special structure can be used in designing a simpler and less memory-intensive optimization
method. This is what we propose in this paper.

In Section 2, we describe the algorithm and its theoretical justification. In Section 3, we apply
the algorithm to a specific case of a Schell-model source and present numerical simulations and
experimental verification.

2. Factored form descent algorithm

We start by rewriting the constrained convex problem into an unconstrained problem by ex-
ploiting the fact that all positive semi-definite matrices can be factored into the product of some
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complex matrix and its complex conjugate transpose, with no additional constraints:

J = XXH (1)

Physically, this is equivalent to saying that partially coherent fields can be represented as inco-
herent ensembles of coherent fields, with each coherent field represented by a single column
vector in the matrix X . Many possible factorizations are possible for any particular J; if the
columns of X happen to be orthogonal, then they also form a coherent-mode decomposition of
the partially coherent field [15,17]. However, to simplify discourse in the context of this paper,
we will refer to the columns of X as modes even if they are not orthogonal, and we will call the
space of matrices X modes space.

Since any J can be factored into a product of an unconstrained matrix X and its conjugate
transpose, we can convert Problem 1 into the following unconstrained quartic problem over the
space of complex N ×N matrices X :

Problem 2.

minimize f̂ (X) =
M

∑
m=1

σ−2
m

(
ym −km

HXXHkm
)2

While there are no direct methods for solving multi-variate quartic minimization problems,
the above problem can be solved using iterative methods. We propose an iterative algorithm
using the nonlinear conjugate gradient method [18] to solve Problem 2. In each iteration, this
algorithm aims to decrease the value of the merit function by updating the factored representa-
tion X , whose columns are the modes of the current estimate of the source mutual intensity J;
we will call this algorithm the factored form descent algorithm:

Algorithm 1. 1. Set X(1) to a random N ×N complex matrix, and S(0) to the zero N ×N
matrix.

2. For each iteration i

(a) Compute intensity errors Δm(i) = ym −km
HX(i)XH(i)km

(b) Set the weighted error matrix E(i) to be the M ×M diagonal matrix with entries
σ−2

m Δm(i)

(c) Compute the mutual intensity space steepest descent direction D(i) = 2KE(i)KH.

(d) Compute the modes space steepest descent direction G(i) = 2D(i)X(i)

(e) If i = 1 or G(i−1) = 0, then set β (i) = 0, otherwise use the modified Polak-Ribière
formula:

β (i) = max

[

0,Re

{
〈G(i),G(i)−G(i−1)〉

‖G(i−1)‖2
F

}]

(f) Compute the conjugate gradient direction S(i) = G(i)+β (i)S(i−1)

(g) Find α(i) that minimizes the single variable quartic polynomial f̂ (X(i)+αS(i)).

(h) Update the iterate X(i+1) = X(i)+α(i)S(i)

2.1. Algorithm behavior

Except for some rare pathological cases, the above algorithm will produce a sequence of iterates
X(i) such that f̂ (X(i)) approaches the globally optimal value of f̂ , thus yielding a sequence of
mutual intensity matrices X(i)XH(i) such that f (X(i)XH(i)) approaches the globally minimal
value in Problem 1. In all cases, the following theorem applies to the above algorithm:
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Theorem 1. Algorithm 1 produces a sequence of iterates X(i) with corresponding monotoni-
cally non-increasing merit function values f̂ (X(i)) and converges when G(i) becomes zero.

This theorem describes the overall behavior of the algorithm, including the unsurprising
termination criterion, and its proof is given in Appendix A. In order to determine what value of
X(i) the algorithm converges to, it would be useful to determine what G(i) being zero implies
about X(i)XH(i) with regards to the original convex problem. To do that, let us first define an
orthonormal basis for the space of N ×N Hermitian matrices:

• Bnn = un(i)un
H(i) for n = 1, . . . ,N, and

• Bnp = (1/2)(1/2) (un(i)up
H(i)+up(i)un

H(i)
)

for n = 1, . . . ,N and p = n+1, . . . ,N, and

• Bpn = j (1/2)(1/2) (un(i)up
H(i)−up(i)un

H(i)
)

for n = 1, . . . ,N and p = n+1, . . . ,N.

where un for n = 1, . . . ,N are the left singular vectors of X(i) with monotonically non-
increasing singular values. That is, if U(i)S(i)V H(i) is the singular value decomposition of
X(i), then un are the columns of U(i) and the diagonal entries of S(i) are non-increasing. Let R
be the rank of X(i) and let B be the set of (N−R)2 basis matrices Bnn,Bnp,Bnp where R< n< p
and let B be the set of the remaining basis matrices. If we consider the geometry of the convex
cone formed by the set of all positive semi-definite matrices, then the boundary of this cone is
the set of matrices that are also rank-deficient. For a rank-deficient X(i), the basis B describes
a space orthogonal to the boundary of the cone and protruding from X(i)XH(i).

Using the above definitions, the following theorem specifies a relationship between the
modes space steepest descent direction G(i) and the mutual intensity space steepest descent
direction D(i):

Theorem 2. When G(i) is zero, the mutual-intensity space steepest descent direction D(i) at
position X(i)XH(i) is orthogonal to all the basis matrices in B.

Proof. We can write G(i) as:

G(i) =
N

∑
n=1

D(i)σn(i)un(i)V
H(i) (2)

Since we know G(i) to be zero and since V (i) is an orthonormal matrix, we have:

0 =
N

∑
n=1

D(i)σn(i)un(i) (3)

This means that D(i)un(i) is zero for n≤ R. Note that any quadratic form of D(i) can be written
as an inner product:

un
H(i)D(i)up(i) =

〈
un(i)up

H(i),D(i)
〉

(4)

Therefore, for any B ∈ B, 〈D(i),B〉= 0.

In other words, once G(i) = 0, D(i) can only point in a direction perpendicular to the bound-
ary of the convex cone. As a special case, if X(i) is full-rank, then G(i) being zero would
imply D(i) being zero. Since convex problems only have one global minimum, this implies that
X(i)XH(i) is the global minimum of Problem 1. If X(i) is rank-deficient, then the following
theorem applies:

Theorem 3. If G(i) = 0 and D(i) is a negative semi-definite matrix, then X(i)XH(i) is the
global optimum of the original convex problem.

#180864 - $15.00 USD Received 29 Nov 2012; revised 3 Feb 2013; accepted 4 Feb 2013; published 1 Mar 2013
(C) 2013 OSA 11 March 2013 / Vol. 21,  No. 5 / OPTICS EXPRESS  5763



In other words, if we are at rank-deficient global minimum, then X(i)XH(i) lies on the bound-
ary of the convex cone and D(i) must point away from the cone. To prove this, let us consider
the set of feasible (i.e. positive semi-definite) mutual intensity matrices in a local neighborhood
around X(i)XH(i). Any such Ĵ in this set can be written as:

Ĵ = X(i)XH(i)+ εS (5)

where ε is a small but positive number and S is a Hermitian matrix. There is a constraint on S
to ensure that Ĵ is positive semi-definite. To explore this constraint, let us first project S onto
null-space of X(i)XH(i):

Ŝ = B̂HSB̂ (6)

where B̂ is a (N −R)×N matrix consisting of column vectors uR+1, . . . ,uN. Given these defi-
nitions, the following lemma applies:

Lemma 1. Ĵ is positive semi-definite if and only if Ŝ is also positive semi-definite.

Proof. First, it is easy to see that if Ŝ is positive semi-definite, then Ĵ is also positive semi-
definite. Now, consider the case that Ŝ is not positive semi-definite. Let v̂ be the eigenvector
corresponding to a negative eigenvalue of Ŝ. Let v = B̂v̂:

vHĴv = v̂HB̂HX(i)XH(i)B̂v̂+ ε v̂HŜv̂ (7)

XH(i)B̂ has to be equal to zero because we chose B̂ to contain only eigenvectors corresponding
to the zero-valued eigenvalues in X(i). Therefore,

vHĴv = ε v̂HŜv̂ (8)

Since ε > 0 and v̂ is an eigenvector corresponding to a negative eigenvalue of Ŝ, vHX̂v < 0 and
thus Ĵ is not positive semi-definite. Therefore, Ĵ is positive semi-definite if and only if Ŝ is also
positive semi-definite.

With Lemma 1 proven, Theorem 3 can now be proven using proof by contradiction.

Proof. (of Theorem 3) In order for X(i)XH(i) to not be a local/global minimum of Problem
1, there must exist some Ĵ such that f (Ĵ) < f (X(i)XH(i)), and thus the corresponding step
direction S must be aligned with the steepest descent direction:

〈S,D(i)〉> 0 (9)

Since D(i) is negative semi-definite, it can be written as a sum of rank-one matrices:

D(i) =−∑
n

enen
H (10)

Furthermore, since G(i) = 0, en = B̂B̂Hen as a consequence of Theorem 2. Therefore, we can
write:

〈S,D(i)〉 = −
〈

S,∑
n

enen
H
〉

= −∑
n

en
HSen

= −∑
n

(
B̂Hen

)H
Ŝ
(
B̂Hen

)
< 0 (11)

This contradicts the alignment requirement specified by Eq. (9). Hence, if D(i) is negative semi-
definite, then there exists no matrix Ĵ in the neighborhood of X(i)XH(i) that exhibits a lower
merit function value, and therefore X(i)XH(i) is the global minimum.
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If D(i) is not negative semi-definite, then X(i) is a saddle point of Problem 2. However, in
practice, the algorithm will rarely converge to such a point because saddle points are inherently
unstable. That is, if we approach such a saddle point, the iterate will “slide” off, away from
the saddle point, unless it is approaching from a pathological direction, of which there is only
a set of measure zero. It is also very easy to determine whether the algorithm has actually
converged to a saddle point by examining the eigenvalues of the mutual intensity space steepest
descent direction D(i). If D(i) is not negative semi-definite, then we can continue the algorithm
after nudging the current iterate by a small fraction of a matrix composing of all the positive
eigenvectors of D(i):

X(i+1) = X(i)+ ε
(
max(λ1,0)v1, . . . ,max(λN ,0)vN

)
(12)

where vn are the eigenvectors corresponding to eigenvalues λn of D(i) and ε is a small positive
number.

2.2. Algorithm complexity

While the nonlinear conjugate gradient method makes no guarantees about the number of iter-
ations needed, it is possible to at least determine the asymptotic computational complexity of
each iteration:

1. Propagated intensity can be computed by performing a matrix-matrix multiplication
KHX(i) followed by finding the element-wise magnitude square of the result and then
summing across columns. This results in O(MN2) operations, dominated by the matrix
multiplication.

2. The weighted error can be computed in O(M) operations.

3. The mutual intensity space steepest descent direction D(i) is computed from a matrix-
matrix multiplication resulting in O(N2M) operations.

4. The modes space steepest descent direction is another matrix-matrix multiplication, re-
sulting in O(N3) operations.

5. Computation of β (i) takes O(N2) operations.

6. Computation of S(i) takes O(N2) operations.

7. Computing the terms of the quartic polynomial in α requires propagation of both X(i)
and S(i), resulting in also O(MN2) operations.

8. Updating the iterate takes O(N2) operations.

Note that if we wish to solve for a N×N mutual intensity matrix with M measurements, then we
need M ≥ N2. Hence, the computational complexity per iteration is O(MN2) or at least O(N4).
With the availability of parallel computing, the runtime can be made shorter since the expensive
O(MN2) matrix-matrix multiplications can be parallelized up to MN ways, massively reducing
the run-time needed.

Storage-wise, the largest matrices are the intermediate products KHX(i) and KHS(i). How-
ever, the resulting output is much smaller and these computations can be split across blocks of
K, reducing the size of the intermediate product at any particular instance in time. Therefore,
the absolute minimal amount of storage needed would include the storage of K itself (which
is the bulk of the storage) as well as iterates X(i), past steepest descent directions and some
constant amount of scratch space, resulting in an asymptotic storage complexity of O(MN) or
O(N3); this is much more efficient than the O(N4) asymptotic storage complexity needed for
interior point methods.
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3. Example application

In order to verify that the factored form descent algorithm also works in practice, we designed
a verifiable one-dimensional phase-space tomography experiment to demonstrate retrieval of
the known mutual intensity of a Schell-model source by the algorithm. In simulation, we used
an ideal source and modeled the phase-space tomography optical arrangement to obtain a se-
quence of “captured” images, from which we reconstructed the mutual intensity of the ideal
source with very little error. We also built the entire optical arrangement, including a 2-f sys-
tem to generate the Schell-model source, and managed to reconstruct a mutual intensity that
reasonably approximates the ideal source.

3.1. Design

The first aspect of the design was to specify a partially coherent source for the experiment.
A one-dimensional Schell-model source was chosen for its prevalence in the literature and
because it is easy to build one in practice.

f f

I II III

Fig. 1. Optical arrangement that generates a Schell-model beam. Uniform spatially inco-
herent quasi-monochromatic light is used to illuminate an amplitude mask at the front focal
plane (I) of a convex lens (II) with focal length f . The partially coherent field immediately
after an amplitude mask at the back focal plane (III) is that of a Schell-model source.

In general, a Schell-model source [19] in one dimension has a mutual intensity function of
the form:

J(x1,x2) = a(x1)a
∗(x2)μ(x1 − x2) (13)

and can be generated using an amplitude mask illuminated by a fully incoherent area source
placed effectively at infinity. An optical system consisting of an amplitude mask at both the front
and back focal planes of a thin convex lens, as shown in Fig. 1, generates a Schell-model source
at the back-focal plane if the front-focal plane is illuminated with uniform, fully incoherent
quasi-monochromatic light. In this case, slits are used for the two masks and the resulting
mutual intensity function at the back-focal plane is given by:

J(x1,x2) = I0 rect(x1/W2) rect(x2/W2)sinc(W1(x1 − x2)/(λF)) (14)

where I0 is the maximum point-wise intensity of the output field, W1 is the width of the front-
focal plane slit, W2 is the width of the back-focal plane slit, F is the focal length of the thin
lens and λ is the wavelength of the incoming light. Based on the availability of specific opti-
cal components, the following parameters were chosen for both the simulation and the actual
experiment:

λ = 532nm , F = 100mm , W1 = 100μm , W2 = 500μm (15)

As was discussed earlier, there are many capture methods to obtain the data needed to re-
construct the source mutual intensity. The most prevalent methods are phase-space tomography
methods, where the transverse intensity of a partially coherent beam is captured at various axial
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positions along the beam, i.e. a focal stack. The idea is that Fourier transforms of the intensity
form different slices through the origin of the ambiguity function [20,21], which in turn can be
mapped one-to-one to the mutual intensity.

However, if we consider the ambiguity function where the horizontal axis is spatial frequency
and the vertical axis is spatial distance, then a simple focal stack will only capture a fraction of
the first and third quadrants. In fact, the horizontal axis (corresponding to the plane where we
wish to obtain the mutual intensity) and the vertical axis (corresponding to a plane infinitely far
away) cannot be measured.

focal stack

O III

(a) (b)

Fig. 2. Using a convex lens, as shown in (a), we can capture both the image (I) and the
Fourier transform intensity (II) of a partially coherent source located at (O) using a finitely
deep focal stack. That is, the intensity at planes I and II correspond to the horizontal and
vertical axes respectively of the ambiguity function (b), allowing more of the ambiguity
function to be directly measured compared to a lensless approach.

Instead, we propose a slightly modified arrangement wherein we use a convex lens to map
both the image (horizontal axis) and the Fourier plane (vertical axis) to locations we can image
directly using a sensor, as shown in Fig. 2. Thus, we can capture the entire first and third
quadrants along with some parts of the second and fourth quadrants.

With this modification, we also bypass another problem of standard focal stacks, where the
light diffracts outward and eventually requires a large and very sensitive sensor to capture the
entire field. By using the lens, we are compressing not only the axial extent, but also the trans-
verse extent of the propagating field so that a finite sensor moving through a finite distance
obtains information about more than half the domain of the ambiguity function.

With this additional modification to phase space tomography, two extra parameters need to
be decided for the design of the optics in the capture system – the focal length of the lens
and the distance from the source plane to the lens. Higher values result in smaller effective
numerical aperture but less aberrations, assuming fixed lens diameters. However, higher values
would also result in a longer distance between the images of the Fourier and source planes.
Thus, a compromise would have to be reached for each particular situation. For this particular
design, we decided on using a convex lens with focal length 50mm placed 150mm after the
source plane, which yields images of the Fourier and primal planes at 50mm and 75mm behind
the lens respectively.

After the capture optics, all that remains are the camera and the linear translation stage. We
used a camera with 3.2μm pixel pitch and modeled it as an ideal sampling system with sampling
interval 3.2μm. According to Nyquist, the highest frequency pattern in intensity that could be
captured would have period 6.4μm, corresponding to a 12.8μm period in the field. Since the
image of the source plane is demagnified by a factor of 2 due to the convex lens, effectively the
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highest frequency field component in the source plane we could image would have a period of
25.6μm. This corresponds to a sampling rate of 12.8μm in the field. The input source should be
ideally 500μm across, but we modelled it as a source 1500μm across so as to not introduce such
a strong prior into the retrieval process, since anything outside the source region is considered
to have zero intensity by the algorithm. This results in 118 pixels at a sampling rate of 12.8μm
for the model of the source field, and thus a 118×118 mutual intensity matrix.

The second slit had width 500μm, which corresponds to 78.125 pixels on the camera when
the sensor plane was on the image of the source plane. The first slit had width 100μm, which
corresponds to 15.625 pixels on the camera when the sensor plane was on the image of the
Fourier plane. Thus, 256 pixels across on the sensor would be able to fully cover both planes
and give enough breathing room on either side.

The last parameter to determine was how many images to capture. Since we are trying to
recover a 118× 118 mutual intensity matrix, we need at least 13924 independent data points
for input to the algorithm. Since each camera image is 256 pixels long, we’d need at least 55
images. The stage available had a total travel of 50mm and thus we decided to capture a total
of 101 images placed 0.25mm apart.

3.2. Simulation

For mutual intensity recovery from simulation, a noiseless set of intensity measurements y0 was
obtained through simulated propagation of the partially coherent field. Propagation was com-
puted by taking the source mutual intensity, in this case a theoretical mutual intensity computed
using Eq. (14) and the design parameters in Eq. (15). y0 is visualized as a focal stack in Fig. 3.
The gamma-boosted image is included to show that the apparent sharp bending of light at the
image plane is an illusion.

y0, noiseless y0, noiseless, gamma-boosted
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Fig. 3. Simulated noiseless data used as input to the factored form descent algorithm, visu-
alized as focal stacks. The right image has been gamma-boosted with γ = 0.3 to enhance
the visibility of lower energy parts of the stack.

From y0, three noisy sets of data were also generated (and they are shown as focal stacks in
Fig. 4):

1. y01 – uniform Gaussian noise in intensity with standard deviation equal to 0.1% of the
maximum intensity in y0.

2. y1 – uniform Gaussian noise in intensity with standard deviation equal to 1% of the
maximum intensity in y0.

3. yp – uniform Gaussian noise in intensity with standard deviation equal to 0.1% of the
maximum intensity in y0 in addition to Poisson noise. The Poisson noise was simulated
using Gaussian noise with variance proportional to the noiseless intensity such that there
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y01, 0.1% Gaussian noise y1, 1% Gaussian noise yp, 0.1% Gaussian noise plus
simulated photon shot noise
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Fig. 4. Simulated noisy data used as input to the factored form descent algorithm, visualized
as focal stacks (top row) and gamma-boosted focal stacks (bottom row).

was effectively Gaussian noise with standard deviation equal to 1% of the maximum
intensity at the maximum intensity point. Physically, this simulation would correspond
to 10000 photons at the brightest camera pixel and an average of approximately 689
photons per camera pixel across all the “captured” pixels.

These simulated data sets, including the noiseless data set, were used as input to the factored
form descent algorithm. Furthermore, the Poisson noise data set yp was run twice, once with
uniform weighting and once with weighting that matched the varying noise standard deviations
for each data point. The different runs are summarized in Table 1, with convergence of RMS
intensity error shown in Fig. 5. Since we also have access to the original mutual intensity that
generated the noiseless data set, we can compare the “error” between the current iterate and
the theoretical mutual intensity across iterations as well. A graph of this mutual intensity error
is shown in Fig. 6. Note that while the RMS intensity error is directly related to the value
of the merit function f̂ for cases of uniform weighting, it is not the case for RUN WP, so the
intensity RMS error may increase from one iteration to the next even if the merit function value
is dropping. However, the overall progression of the merit function is essentially the same as
the intensity RMS error and has been omitted from this manuscript for brevity.

From the two graphs, the following observations can be made:

• Even though the error in mutual intensity can sometimes increase, the overall progression
of mutual intensity RMS error can be predicted by the overall progression of intensity
RMS error.

• RMS intensity error converged for all but the noiseless data set, with the latter continuing
make gains per iteration, albeit sub-linearly. It appears that noisier input sources resulted
in faster “convergence”.

• As expected, noisier input sources resulted in higher RMS error after convergence in
both intensity and mutual intensity. For example, y1 showed greater error than y01 and yp
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Table 1. Algorithm Runs on Simulated Data

Name Input Iterations Weighting
RUN 0 y0 500 uniform
RUN 01 y01 500 uniform
RUN 1 y1 500 uniform
RUN WP yp 500 matching
RUN UP yp 500 uniform
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Fig. 5. Convergence of RMS error between the input intensity data set and the intensity
computed from the current iterate of the mutual intensity in the factored form descent al-
gorithm. Both the error axis and the iteration (time) axis are shown in log scale.
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Fig. 6. Convergence of RMS error between the theoretical mutual intensity and the current
iterate of the mutual intensity. Both the error axis and the iteration (time) axis are shown in
log scale.
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results were somewhere in between; yp also has higher noise than y01 but on average less
noise than y1 because peak noise for the yp is only slightly higher magnitude than y1.

• As can be seen in Fig. 6, proper weighting using noise statistics results in some gain
in reconstruction fidelity, illustrating the merits of the algorithm’s ability to incorporate
per-measurement weighting.

Now let us examine in more detail the final mutual intensity obtained from each of the runs.
Figure 7 and Fig. 8 contain images of the theoretical mutual intensity and the resultant mutual
intensity for each of the runs as well as corresponding difference images. Figure 9 is a graph
comparing the drop-off in mode intensity for all of the mutual intensity matrices involved, and
Fig. 10 contains field magnitude plots of the first five modes for each mutual intensity. A few
more observations can be made from these figures.

• There is hardly any difference between the RUN 0 reconstruction and the original theo-
retical mutual intensity. The RUN 01 noise data yielded slightly noticeable differences,
while RUN 1 resulted in the largest error in the mutual intensity. For the Poisson shot
noise simulated data, reconstructions were better than RUN 1 but worse than RUN 01.
Furthermore, using only uniform weighting for the algorithm resulted in a “grainier”
reconstruction, as can be seen in the RUN UP result.

• The errors in the mutual intensity reconstructions seem to be concentrated in two areas: a
cross-shaped section and the diagonal. The “arms” of the cross are intuitive locations for
error to accumulate, because of nonzero values outside the spatial extent of the original
partially coherent field. The accumulation of some error along the diagonal indicates that
there’s some excess energy beyond the actual modes in the reconstruction, and can be a
sign of a slightly under-constrained system. That is, there may not be enough constraints
to pin the global minimum onto the space of rank deficient matrices.

In the presence of noise and uniform weighting, the noise in the mutual intensity recon-
struction seems to be fairly evenly distributed. However, in the case of RUN WP with
simulated Poisson shot noise, the majority of the error seems to fall onto two points in
the mutual intensity. Furthermore, the error for the noiseless case RUN 0 is spread out
over the mutual intensity more smoothly. More research into the shape of that error re-
gion may lead to some insight into which basis functions of the mutual intensity require
more time to converge and possible ways to improve the algorithm through some sort of
universal preconditioner.

• The fall-off of coherence mode intensities in the reconstructions paints a very similar
picture to what has been discussed before. The mode fall-off curves of the reconstruc-
tions remain close to the theoretical fall-off curve for longer for those reconstructions
which result in less error. It’s curious to note that while the noiseless run resulted in
a single “plateau” in the fall-off curve, the noisy runs generally had two plateaus. It
appears that the direct effect of the noise is present in the first plateau and conver-
gence/underconstrainedness is expressed in the second, longer plateau. The latter must
give rise to the diagonal error structure due to the vast number of modes present.

• Finally, in the field magnitude plots for the first five modes, it appears that extra noise
energy is introduced to the lower intensity modes, siphoning away from the higher inten-
sity modes. However, this could simply be an artifact of the singular value decomposition
process. In either case, this indicates that there is a gradual degradation of reconstructed
modes and that even if our measurements are too easy to reconstruct the lower intensity
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Fig. 7. At top is an image of the magnitude of the theoretical mutual intensity. Below the top
image are three sets of images corresponding to three different uniform noise runs, with the
left image being the magnitude of the resulting mutual intensity and the right image being
the magnitude of the difference between the resulting mutual intensity and the theoretical
mutual intensity.
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Fig. 8. Images corresponding to the runs using the Poisson shot noise data set yp. The left
column contains images of the magnitude of the mutual intensity and the right column
contains images of the magnitude of the difference between the attained mutual intensity
and the theoretical mutual intensity. The error images in this case have been scaled the
same to allow easier comparison between uniform weighting and matched weighting.

1 10 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

mode number

m
od

e 
in

te
ns

ity

 

 
Theoretical
RUN_0
RUN_01
RUN_1
RUN_WP
RUN_UP

Fig. 9. A plot of the energy contained in each mode after performing a coherence mode
decomposition on the theoretical mutual intensity as well as the computed mutual intensity
from each run. The horizontal axis gives the mode number on a log scale, with modes
sorted by decreasing energy, and the vertical axis gives the energy on a log scale.
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Fig. 10. A plot of the magnitude of the field for the first five coherence modes of the
theoretical mutual intensity as well as the computed mutual intensity from each run.
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modes, we can still reconstruct to a fair degree the higher intensity modes. Lastly, in com-
paring the uniformly weighted (RUN UP) and properly weighted (RUN WP) runs on the
simulated Poisson shot noise data set yp, it is evident that using only uniform weighting
results in higher noise in the modes.

3.3. Experiment

The experimental arrangement consists of two parts – the Schell-model partially coherent light
source and the modified phase space tomography capture system. A Thorlabs LEDC13 530nm
collimated LED light source was used as the initial light source, and its light was filtered by
a 532nm bandpass filter with a FWHM of 10nm in order to enhance the monochromaticity of
the light. This light was then passed through a 2-f optical system consisting of a 100mm focal
length plano-convex lens with a 100nm slit at the front focal plane and a 500nm slit at the back
focal plane. The flat side of the plano-convex lens was facing the 100nm slit. This arrangement
generates a Schell-model partially coherent field immediately after the 500nm slit.

This partially coherent field was then propagated 150mm onwards until another plano-convex
lens, this time having a focal length of 50mm and its flat side facing away. A uEye UI-1460SE-
C USB color camera mounted on a Newport XMS50 motorized translation stage was placed
behind this lens. The translation stage with its 50mm travel distance allowed the sensor plane
on the camera to travel between locations 45mm and 95mm behind the 50mm lens.

A custom Python script was used to control both the translation stage and the camera to
capture focal stacks of 201 images each, at 0.25mm step intervals. Two focal stacks were cap-
tured using the setup, one with the LED turned on (LED ON) and one with the LED turned off
(LED OFF). The latter was captured for background subtraction.

Although the camera used was a Bayer-based color camera, the capture process captured
only the raw pixel values from the sensor without demosaicing. For each stage position, the
following procedure was performed:

1. Retrieve a 256×256 sub-image img on from the entire 2048×1536 LED ON image.

2. Retrieve a sub-image img off covering the same exact pixels from the LED OFF image.

3. Set line on to be a set of values where each value is the mean value of only the green
pixels in each column of img on.

4. Set line off to be a set of values where each value is the mean value of only the green
pixels in each column of img off.

5. Set line on 1 to be the set of pixel values for all the green pixels in the center 256×2
portion of line on.

6. Set line on std to be the sample standard deviation of green pixel values in each
column of img on.

7. Subtract line off from line on and append to intensity measurement vector yexp.

8. Subtract line off from line on 1 and append to intensity measurement vector
yexp1.

9. Append line on std to the noise standard deviation estimate vector σexp.

The collected data is shown as focal stacks in Fig. 11.
Four separate runs of the factored form descent algorithm were then performed, as shown

in Table 2. The U runs were with uniform weighting, i.e. σm = 1 for all m, whereas the W
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Fig. 11. The data collected during the experiment, visualized as focal stacks (top row) and
gamma-boosted focal stacks (bottom row).

Table 2. Algorithm Runs on Experimental Data

Name Input Iterations Weighting
RUN EXP U yexp 500 uniform
RUN EXP W yexp 500 σexp
RUN EXP1 U yexp1 500 uniform
RUN EXP1 W yexp1 500 σexp
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Fig. 12. Convergence of RMS error between the input experimental data and the inten-
sity computed from the current iterate of the mutual intensity in the factored form descent
algorithm. Both the error axis and the iteration (time) axis are shown in log scale.
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Fig. 13. Images corresponding to the resulting mutual intensity computed by runs on the
experimental data sets. The left column contains images of the magnitude of the mutual
intensity and the right column contains images of the magnitude of the difference between
the attained mutual intensity and the theoretical mutual intensity.
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Fig. 14. A plot of the energy contained in each mode after performing a coherence mode
decomposition on the theoretical mutual intensity as well as the computed mutual intensity
from each experimental run. The horizontal axis gives the mode number, with modes sorted
by decreasing energy, and the vertical axis gives the energy on a log scale.
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Fig. 15. A plot of the magnitude of the field for the first five coherence modes of the
theoretical mutual intensity as well as the computed mutual intensity from each run.
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runs were with estimates of the standard deviation. Though technically, the weighting should
be σexp/

√
128 for the RUN EXP W case, constant scale factors on the weighting vector have

no actual effect on the algorithm; it only rescales the merit function by a constant scale factor.
The RUN EXP1 runs were done to see a more realistic use-case, since it is often not feasible to
perform averages to boost SNR in real-world situations. Each run converged by the end of the
500 iterations, as can be seen in Fig. 12.

As expected, unweighted RMS intensity error was reduced in all the runs, and the weighted
runs resulted in higher unweighted RMS intensity error. Furthermore, the runs on unaveraged
data generally resulted in slightly higher error.

From the mutual intensity images in Fig. 13, it can be seen that the experimental data matches
fairly closely the theoretical data, with most of the error in the border regions. It appears that
the recovered mutual intensity wasn’t as sharp as the theoretical, which is probably due to
aberrations and limitations of the imaging system. Furthermore, use of noise standard deviation
estimates seemed to have removed the excess energy along the diagonal in regions outside of
the central square region, although the resulting mutual intensity no longer looked as spatially
symmetric.

The mode-wise energy distribution graph in Fig. 14 shows that the uniformly weighted runs
deviate from the theoretical mode drop-off more quickly, although they have smaller “first
plateaus”. The non-uniformly weighted runs follow the theoretical mode drop-off more closely,
but they have larger “first plateaus” after they deviate. The higher fidelity of the first few modes
can be seen in the mode field magnitudes plotted in Fig. 15, where RUN EXP W managed to
reconstruct the first three modes, with the third mode in RUN EXP1 W still showing some sem-
blance of the theoretical third mode. Runs RUN EXP U and RUN EXP1 U failed to reconstruct
the third mode properly and exhibited more noise outside of the region of the 500nm slit.

4. Conclusions

We have constructed a generalized formulation for coherence retrieval and demonstrated a novel
optimization algorithm to solve for the global minimum. A verifiable test using both simulated
and experimental measurement data of a Schell-model source demonstrates that the algorithm
functions correctly, leading to reasonable reconstructions of the original mutual intensity. The
ability to weight the fidelity of each measurement by providing noise standard deviations for
each point enables the option of boosting reconstruction fidelity by matching noise statistics. In
all runs, the theoretical possibility of a pathological saddle point was never encountered.

However, there are two problems with the algorithm that could be the focus of further re-
search. The first problem, as can be seen in Fig. 5 is that although error reduction is initially
fast, final convergence is slow. Even when near convergence, there is extraneous energy present
in modes that should have zero energy, as shown in Fig. 9. The noiseless case error image in
Fig. 7 may provide some clues for a way to precondition the algorithm to solve these problems.

The second problem is that while the algorithm compensates for noise in the measurements,
it does not compensate for errors in the specification of the propagation matrix A. In a real-
world situation, it is impossible to determine the exact system function of an optical system.
Error will either result from aberrations in the physical system or simply from measurement
error if one chooses to characterize A empirically. To make the algorithm more robust, we need
to improve the algorithm to allow it to tolerate a certain degree of error in A.

In addition to these problems, there are many other potential new avenues of research, in-
cluding expanding the experimental setup to capture fully two-dimensional fields and applying
the algorithm to non-tomographic capture protocols as well as illumination synthesis problems.

Lastly, we would like to discuss the similarities and differences between this work and com-
pressive phase space tomography [6]. While both techniques aim at recovering the mutual inten-
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sity function of a partially coherent field and rely on the positivity of mutual intensity matrices,
compressive phase space tomography introduces an additional prior that the field has a low
number of modes and intentionally undersamples the measurements. This work relies on no
such assumption and thus requires many more measurements. Perhaps it would be possible to
unify these two approaches in the future.

A. Proof of Theorem 1

Proof. To prove Theorem 1, we will first show that the algorithm is monotonically decreasing
and will eventually converge to some value. The monotonic behavior of merit function values
is a direct consequence of the use of exact global line searches; for each iteration, the merit
function value for the next iteration is bounded above by the current value and bounded below
by the global minimum. Therefore, the sequence of merit function values must decrease mono-
tonically and eventually converge to some value. Now let us investigate the conditions required
for the algorithm to stop making progress and thus terminate.

Since the iterate X(i) changes by α(i)S(i) each iteration, the factored form descent algorithm
would stop making progress if and only if α(i)S(i) became zero for all future iterations. This is
only possible if S(i) = 0 or if α(i) = 0 in the case that S(i) �= 0. We will now consider the first
case.

We can split this case into two situations, depending on whether G(i) = 0. If G(i) = 0, then
β (i) necessarily has to be zero because the numerator is a dot product with G(i). Therefore,
S(i) = 0 would be zero as well. If G(i) �= 0, then we can show that S(i) �= 0 as well. The only
way S(i) could have been zero were if G(i) =−β (i)S(i−1). For i = 1, β (i) = 0 and thus this
statement would be false. For i > 1, the line search in the previous iteration guarantees that
〈G(i),S(i−1)〉 = 0, and hence it would be impossible for a scalar multiple of S(i− 1) to be
equal to G(i). Therefore, S(i) = 0 can only be true if G(i) = 0.

Now let us consider the case when S(i) �= 0 and α(i) = 0. A necessary condition for α(i) = 0
is for G(i) and S(i) to have an inner product of zero, necessarily implying:

0 = 〈S(i),G(i)〉= 〈G(i)+β (i)S(i−1),G(i)〉= 〈G(i),G(i)〉 (16)

Therefore, this case also requires G(i) = 0 to be true. Combining the two cases results in the
conclusion that when the algorithm stops making progress and terminates, G(i) = 0.

Hence, the factored form descent algorithm must produce monotonically decreasing merit
function values and converges when G(i) = 0.
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