
































modes, we can still reconstruct to a fair degree the higher intensity modes. Lastly, in com-
paring the uniformly weighted (RUN UP) and properly weighted (RUN WP) runs on the
simulated Poisson shot noise data set yp, it is evident that using only uniform weighting
results in higher noise in the modes.

3.3. Experiment

The experimental arrangement consists of two parts – the Schell-model partially coherent light
source and the modified phase space tomography capture system. A Thorlabs LEDC13 530nm
collimated LED light source was used as the initial light source, and its light was filtered by
a 532nm bandpass filter with a FWHM of 10nm in order to enhance the monochromaticity of
the light. This light was then passed through a 2-f optical system consisting of a 100mm focal
length plano-convex lens with a 100nm slit at the front focal plane and a 500nm slit at the back
focal plane. The flat side of the plano-convex lens was facing the 100nm slit. This arrangement
generates a Schell-model partially coherent field immediately after the 500nm slit.

This partially coherent field was then propagated 150mm onwards until another plano-convex
lens, this time having a focal length of 50mm and its flat side facing away. A uEye UI-1460SE-
C USB color camera mounted on a Newport XMS50 motorized translation stage was placed
behind this lens. The translation stage with its 50mm travel distance allowed the sensor plane
on the camera to travel between locations 45mm and 95mm behind the 50mm lens.

A custom Python script was used to control both the translation stage and the camera to
capture focal stacks of 201 images each, at 0.25mm step intervals. Two focal stacks were cap-
tured using the setup, one with the LED turned on (LED ON) and one with the LED turned off
(LED OFF). The latter was captured for background subtraction.

Although the camera used was a Bayer-based color camera, the capture process captured
only the raw pixel values from the sensor without demosaicing. For each stage position, the
following procedure was performed:

1. Retrieve a 256×256 sub-image img on from the entire 2048×1536 LED ON image.

2. Retrieve a sub-image img off covering the same exact pixels from the LED OFF image.

3. Set line on to be a set of values where each value is the mean value of only the green
pixels in each column of img on.

4. Set line off to be a set of values where each value is the mean value of only the green
pixels in each column of img off.

5. Set line on 1 to be the set of pixel values for all the green pixels in the center 256×2
portion of line on.

6. Set line on std to be the sample standard deviation of green pixel values in each
column of img on.

7. Subtract line off from line on and append to intensity measurement vector yexp.

8. Subtract line off from line on 1 and append to intensity measurement vector
yexp1.

9. Append line on std to the noise standard deviation estimate vector σexp.

The collected data is shown as focal stacks in Fig. 11.
Four separate runs of the factored form descent algorithm were then performed, as shown

in Table 2. The U runs were with uniform weighting, i.e. σm = 1 for all m, whereas the W
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Fig. 11. The data collected during the experiment, visualized as focal stacks (top row) and
gamma-boosted focal stacks (bottom row).

Table 2. Algorithm Runs on Experimental Data

Name Input Iterations Weighting
RUN EXP U yexp 500 uniform
RUN EXP W yexp 500 σexp
RUN EXP1 U yexp1 500 uniform
RUN EXP1 W yexp1 500 σexp
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Fig. 12. Convergence of RMS error between the input experimental data and the inten-
sity computed from the current iterate of the mutual intensity in the factored form descent
algorithm. Both the error axis and the iteration (time) axis are shown in log scale.
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Fig. 13. Images corresponding to the resulting mutual intensity computed by runs on the
experimental data sets. The left column contains images of the magnitude of the mutual
intensity and the right column contains images of the magnitude of the difference between
the attained mutual intensity and the theoretical mutual intensity.
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Fig. 14. A plot of the energy contained in each mode after performing a coherence mode
decomposition on the theoretical mutual intensity as well as the computed mutual intensity
from each experimental run. The horizontal axis gives the mode number, with modes sorted
by decreasing energy, and the vertical axis gives the energy on a log scale.
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Fig. 15. A plot of the magnitude of the field for the first five coherence modes of the
theoretical mutual intensity as well as the computed mutual intensity from each run.
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runs were with estimates of the standard deviation. Though technically, the weighting should
be σexp/

√
128 for the RUN EXP W case, constant scale factors on the weighting vector have

no actual effect on the algorithm; it only rescales the merit function by a constant scale factor.
The RUN EXP1 runs were done to see a more realistic use-case, since it is often not feasible to
perform averages to boost SNR in real-world situations. Each run converged by the end of the
500 iterations, as can be seen in Fig. 12.

As expected, unweighted RMS intensity error was reduced in all the runs, and the weighted
runs resulted in higher unweighted RMS intensity error. Furthermore, the runs on unaveraged
data generally resulted in slightly higher error.

From the mutual intensity images in Fig. 13, it can be seen that the experimental data matches
fairly closely the theoretical data, with most of the error in the border regions. It appears that
the recovered mutual intensity wasn’t as sharp as the theoretical, which is probably due to
aberrations and limitations of the imaging system. Furthermore, use of noise standard deviation
estimates seemed to have removed the excess energy along the diagonal in regions outside of
the central square region, although the resulting mutual intensity no longer looked as spatially
symmetric.

The mode-wise energy distribution graph in Fig. 14 shows that the uniformly weighted runs
deviate from the theoretical mode drop-off more quickly, although they have smaller “first
plateaus”. The non-uniformly weighted runs follow the theoretical mode drop-off more closely,
but they have larger “first plateaus” after they deviate. The higher fidelity of the first few modes
can be seen in the mode field magnitudes plotted in Fig. 15, where RUN EXP W managed to
reconstruct the first three modes, with the third mode in RUN EXP1 W still showing some sem-
blance of the theoretical third mode. Runs RUN EXP U and RUN EXP1 U failed to reconstruct
the third mode properly and exhibited more noise outside of the region of the 500nm slit.

4. Conclusions

We have constructed a generalized formulation for coherence retrieval and demonstrated a novel
optimization algorithm to solve for the global minimum. A verifiable test using both simulated
and experimental measurement data of a Schell-model source demonstrates that the algorithm
functions correctly, leading to reasonable reconstructions of the original mutual intensity. The
ability to weight the fidelity of each measurement by providing noise standard deviations for
each point enables the option of boosting reconstruction fidelity by matching noise statistics. In
all runs, the theoretical possibility of a pathological saddle point was never encountered.

However, there are two problems with the algorithm that could be the focus of further re-
search. The first problem, as can be seen in Fig. 5 is that although error reduction is initially
fast, final convergence is slow. Even when near convergence, there is extraneous energy present
in modes that should have zero energy, as shown in Fig. 9. The noiseless case error image in
Fig. 7 may provide some clues for a way to precondition the algorithm to solve these problems.

The second problem is that while the algorithm compensates for noise in the measurements,
it does not compensate for errors in the specification of the propagation matrix A. In a real-
world situation, it is impossible to determine the exact system function of an optical system.
Error will either result from aberrations in the physical system or simply from measurement
error if one chooses to characterize A empirically. To make the algorithm more robust, we need
to improve the algorithm to allow it to tolerate a certain degree of error in A.

In addition to these problems, there are many other potential new avenues of research, in-
cluding expanding the experimental setup to capture fully two-dimensional fields and applying
the algorithm to non-tomographic capture protocols as well as illumination synthesis problems.

Lastly, we would like to discuss the similarities and differences between this work and com-
pressive phase space tomography [6]. While both techniques aim at recovering the mutual inten-
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sity function of a partially coherent field and rely on the positivity of mutual intensity matrices,
compressive phase space tomography introduces an additional prior that the field has a low
number of modes and intentionally undersamples the measurements. This work relies on no
such assumption and thus requires many more measurements. Perhaps it would be possible to
unify these two approaches in the future.

A. Proof of Theorem 1

Proof. To prove Theorem 1, we will first show that the algorithm is monotonically decreasing
and will eventually converge to some value. The monotonic behavior of merit function values
is a direct consequence of the use of exact global line searches; for each iteration, the merit
function value for the next iteration is bounded above by the current value and bounded below
by the global minimum. Therefore, the sequence of merit function values must decrease mono-
tonically and eventually converge to some value. Now let us investigate the conditions required
for the algorithm to stop making progress and thus terminate.

Since the iterate X(i) changes by α(i)S(i) each iteration, the factored form descent algorithm
would stop making progress if and only if α(i)S(i) became zero for all future iterations. This is
only possible if S(i) = 0 or if α(i) = 0 in the case that S(i) �= 0. We will now consider the first
case.

We can split this case into two situations, depending on whether G(i) = 0. If G(i) = 0, then
β (i) necessarily has to be zero because the numerator is a dot product with G(i). Therefore,
S(i) = 0 would be zero as well. If G(i) �= 0, then we can show that S(i) �= 0 as well. The only
way S(i) could have been zero were if G(i) =−β (i)S(i−1). For i = 1, β (i) = 0 and thus this
statement would be false. For i > 1, the line search in the previous iteration guarantees that
〈G(i),S(i−1)〉 = 0, and hence it would be impossible for a scalar multiple of S(i− 1) to be
equal to G(i). Therefore, S(i) = 0 can only be true if G(i) = 0.

Now let us consider the case when S(i) �= 0 and α(i) = 0. A necessary condition for α(i) = 0
is for G(i) and S(i) to have an inner product of zero, necessarily implying:

0 = 〈S(i),G(i)〉= 〈G(i)+β (i)S(i−1),G(i)〉= 〈G(i),G(i)〉 (16)

Therefore, this case also requires G(i) = 0 to be true. Combining the two cases results in the
conclusion that when the algorithm stops making progress and terminates, G(i) = 0.

Hence, the factored form descent algorithm must produce monotonically decreasing merit
function values and converges when G(i) = 0.
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