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Abstract

In wave optics, the Wigner distribution and its Fourier
dual, the ambiguity function, are important tools in optical
system simulation and analysis. The light field fulfills a sim-
ilar role in the computer graphics community. In this paper,
we establish that the light field as it is used in computer
graphics is equivalent to a smoothed Wigner distribution
and that these are equivalent to the raw Wigner distribution
under a geometric optics approximation. Using this insight,
we then explore two recent contributions: Fourier slice pho-
tography in computer graphics and wavefront coding in op-
tics, and we examine the similarity between explanations of
them using Wigner distributions and explanations of them
using light fields. Understanding this long-suspected equiv-
alence may lead to additional insights and the productive
exchange of ideas between the two fields.

1. Introduction

Simulation and analysis of optical systems have long
been an intrinsic part of computer graphics. The light
field[15], a mapping from rays to radiance, provides a
powerful tool in this regard. For example, pinhole im-
ages can be generated through slicing of the light field[24],
finite aperture images with depth-of-field effects can be
generated through integration[19], and light propagation
and lensing can be described using linear coordinate
transformations[17] of the light field.

Similarly, in the optics literature, the Wigner
distribution[33] of the scalar field and its Fourier dual,
the ambiguity function[35], have been used extensively
to simulate optical systems because they remove the
need to compute complicated integrals of the scalar field
directly[30, 5]. In particular, light propagation and lensing
can be described using linear coordinate transformations of
the Wigner distribution[5].

These similarities are supported by a body of literature
in the optics community that relates the concept of radiance
to wave optics[32, 34]. However, it turns out that radiance
as a concept in wave optics cannot be well defined[13] and
cannot be measured directly. Therefore, we describe an al-
ternate path from wave optics to the light field by using radi-
ant intensity. Based on this path, we show that the light field
is equivalent to a smoothed Wigner distribution, which ap-
proaches the Wigner distribution under a geometric optics
approximation.

Using this conceptual equivalence, we can reinterpret
previous work in the optics literature and show how it cor-
responds to recent work in the computer graphics literature.
For example, different slices in the Fourier transform of the
light field have been shown to yield images focused at dif-
ferent planes[28]. Different slices of the ambiguity func-
tion yield the same results[30, 9]. Furthermore, while the
original analysis of cubic phase plate wavefront coding was
performed using the ambiguity function[11], we can do the
same using light fields. Understanding these similarities
gives us a framework for analyzing other works in the two
fields for which the parallels are not yet recognized.

We are not the first to apply wave optics concepts to
light fields. There is previous work exploring and extending
the depth of field of integral imaging systems through the
use of Wigner distributions[14]. However, that paper does
not investigate whether the four-dimensional function rep-
resented by the light field is related to the four-dimensional
Wigner distribution. There is also previous work in deriv-
ing a light field from a scalar field and vice versa[36], but it
does not touch upon Wigner distributions.

2. Wigner Distributions in Optics

Before we show how the Wigner distribution is similar
to a light field, let us review the Wigner distribution func-
tion as it is used in Fourier optics. Light propagates through
three-dimensional space as a wave, and by measuring the
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scalar field of the wave at some plane, we can obtain infor-
mation about how the light will propagate past this plane.
For this two-dimensional scalar field, the Wigner distribu-
tion is a four-dimensional function that describes the field’s
positional information along two of the axes and its fre-
quency information along the other two.

Let us assume we have narrowband polychromatic light.
We can represent its wave function, which is a descrip-
tion of oscillations in the electric and magnetic fields, as
U(x, y, z, τ), a time varying phasor of a scalar field[16].
Suppose we have measurements U1(x, y, τ) of the scalar
field at some plane z=z1, and we wish to derive the intensity
I(x, y) at some other plane z=z2 with optical elements in
between. The standard method is to apply a series of Fresnel
diffraction integrals and phase mask multiplications[16].
To simplify this situation, we can instead derive the out-
put image through the use of the input scalar field’s four-
dimensional Wigner distribution, defined as:

WU1
(x,y,fξ ,fη)=

∫∫

JU1
(x,y, ξ,η)e-j2π(fξξ+fηη)dξdη (1)

where

JU1
(x, y, ξ, η)=

〈

U1

(

x+ ξ
2 , y+ η

2 , τ
)

U∗

1

(

x− ξ
2 , y− η

2 , τ
)〉

τ
(2)

is the mutual intensity1 of the input scalar field. The mu-
tual intensity describes how coherent and energetic any two
points in the scalar field are; two points which are less co-
herent will yield smaller values in the mutual intensity. We
obtain this function by multiplying the scalar field U1(x, y)
by a shifted complex conjugate copy of itself for all possible
shifts (ξ, η) and then averaging each result over time.

In the case of fully coherent light, the product of the
scalar field and its shifted complex conjugate is time-
invariant, and thus we can remove the extraneous time av-
erage from the mutual intensity:

JU1
(x, y, ξ, η)=U1

(

x+ ξ
2 , y+ η

2

)

U∗

1

(

x− ξ
2 , y− η

2

)

(3)

The above expression is sometimes referred to as the instan-
taneous autocorrelation, since integrating along the shift
axes produces the autocorrelation of the field.

The effect of coherence on the Wigner distribution and
the mutual intensity can be seen in Fig. 1. Since they are
quadratic representations of the scalar field, we cannot, for
example, expect the sum of Wigner distributions to be the
Wigner distribution of a sum. This nonlinearity explains
why there are cross terms (interference) in a system with
two coherent slits, as explained in the figure caption. If
we were to simply add the mutual intensity of the two slits

1We use average and difference variables here instead of two separate
spatial coordinates, which is more common.
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Figure 1. A single coherent plane wave approaches two slits I and
II in (a) while plane waves blue (left) and green (right), incoher-
ent relative to each other, hit slit I and II, respectively, in (b). The
mutual intensities for the two cases can be seen in (c) and (d), the
Wigner distributions in (e) and (f), and the ambiguity functions in
(g) and (h). In all cases, darker equals greater magnitude. The
presence of cross terms caused by interference between the two
slits in the left column give rise to diamonds A and C in the mu-
tual intensity, band B in the Wigner distribution and the sidebands
A and C in the ambiguity function. The periodic features in the
Wigner distribution and ambiguity function are aliasing artifacts
due to discrete sampling in the numerical simulation.

separately, we would obtain only two diamond-shaped re-
gions, exactly like the incoherent case in Fig. 1(d). In fact,
adding Wigner distributions is equivalent to treating their
scalar fields as being incoherent with respect to each other.

Another useful function related to the Wigner distribu-
tion is its Fourier dual, the ambiguity function, which can
be written as:

AU1
(fx, fy, ξ, η)=

∫∫

JU1
(x, y, ξ, η)e−j2π(fxx+fyy)dxdy

= F−1
ξ,η {Fx,y {WU1

(x, y, fξ , fη)}}
(4)

We will cover one particular use of the Wigner distri-
bution in the following section. Other properties, uses and
examples of the Wigner distribution in optics can be found



in [6].

2.1. Radiance and the Wigner Distribution

Since the light field is a mapping from rays to radiance,
an attractive approach to our overall goal is to explore works
in the optics literature that attempt to define radiance in
terms of wave optics and see how these definitions relate
to the Wigner distribution. However, we will see that radi-
ance is not well-defined in wave optics and is not directly
measurable. This motivates us to investigate an alternate
approach in Section 3.

Most of the work tying radiance and wave optics con-
centrate on finding a radiance function that satisfies a set of
ideal properties[34]. The first such work, by Walther[32],
attempts to find a radiance function that when integrated
along angle and space, becomes the flux exiting a surface.
In his work, Walther derives the following expression for
radiance of some scalar field U :

B = N

∫∫

1
λ2 JU (x, y, ξ, η)e−j

2π
λ (Lξ+Mη)dξdη (5)

where B is the radiance, λ is the wavelength of light, JU

is the mutual intensity and the “ray” is parametrized by a
point

(

x y
)T and a unit vector

(

L M N
)T indicating the

direction. Using the definition of the Wigner distribution in
(1), we obtain that radiance can be written in terms of the
Wigner distribution of the scalar field:

B = N 1
λ2 WU

(

x, y, L
λ , M

λ

)

(6)

In the small angle approximation, where N ≈ 1, we obtain
that the radiance is of the following form:

B = 1
λ2 Ŵ

(λ)
U (x, y, u, v) (7)

where u = L
N and v = M

N are the slopes in x and y respec-
tively of the ray direction and

Ŵ
(λ)
U (x, y, u, v) = WU

(

x, y, u
λ , v

λ

)

(8)

is what we will call the slope-form Wigner distribution.
Strictly speaking, the concept of a ray does not exist in

wave optics – a ray is defined by a point and a direction, but
one of the fundamental results of Fourier optics is that an
infinitesimal point must emit isotropically in all directions.
We can see a similar effect when a pebble dropped into a
pond produces only circular waves. Therefore, there cannot
be a strict mapping of radiance onto wave optics.

In fact, the expression for radiance given by (5), being a
function of the Wigner distribution of some arbitrary scalar
field, can at times become negative, which violates the pos-
itivity of radiance and thus cannot be a physically measur-
able quantity[27]. Furthermore, there cannot be a radiance
function satisfying all the ideal properties of radiance[13].

A summary of the idea of radiance in wave optics can be
found in [34].

That said, in the short-wavelength limit (geometric op-
tics), Walther’s equation for radiance (5) has been shown to
satisfy all the ideal properties of radiance[12, 20], thereby
proving the Wigner distribution equivalent to radiance (and
thus light fields) at this limit. However, since radiance can-
not be directly measured and a radiance function cannot be
well-defined for all cases, we propose an alternate approach
using radiant intensity to tie together light fields and Wigner
distributions.

3. The Light Field as a Wigner Distribution

Rays in the light field can be parametrized by a point
and a direction, which we’ve just seen to be problematic
in wave optics. However, while fundamental wave optics
principles state that a infinitesimal pinhole must transmit
light isotropically, a finite aperture can transmit light with
angular variation. Therefore, instead of trying to find the
angular variation of light transmitted through a point, as we
would in the case of radiance, let us find the angular varia-
tion of light transmitted through an arbitrary finite aperture
centered on this point by using radiant intensity.2 We will
call this the observable light field. Using this approach will
help us easily analyze spatioangular tradeoffs inherent in
capturing light fields (Section 3.3), as well as the relation-
ship between a discrete, physically captured light field and
the Wigner distribution (Section 4.1).

3.1. The Observable Light Field

We shall start with a three-dimensional system in which
light propagates in the positive z direction. Let us use the
two-plane parametrization of the light field[24], placing the
(s, t), or reference plane, on the (x, y) plane and the (u, v)
plane at z=∞. This makes (u, v) coordinates represent an-
gles or slopes. To define the opening through which rays
will pass, we will use a two-dimensional aperture transmis-
sion function T (x, y), which we will translate along the ref-
erence plane for particular values of (s, t). Note that this
aperture needs to have finite area in order to capture any di-
rectional information, as discussed earlier. We then define
the observable light field from aperture T as the observed
radiant intensity of light emanating in a particular direction
(u, v) from a translated aperture T (x-s, y-t), as shown in
Fig. 2.

Given a scalar field U(x, y) at the z = 0 plane and an
aperture function T (x, y), we can derive an expression for
the radiant intensity, which is the amount of power emitted

2Radiant intensity is defined in computer graphics to be some angular
variation of light coming from an imaginary point in the scene[18]. How-
ever, in optics, it is simply the angular variation of light from an area emit-
ter, with this imaginary point being the origin of the coordinate system[7].
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Figure 2. The light field is defined as the radiance along a ray
(blue) for all the possible rays, as shown in (a). Rays can be pa-
rameterized by an intersection with a reference plane at (s, t) and
a slope (u, v). Since point sources can only be isotropic emitters
in wave optics, we must define a new concept called the observ-
able light field, which is a measure of the radiant intensity along
the angle given by the slope (u, v) emanating from a small region
on the reference plane centered on (s, t), as shown in (b). The
vertical graph along the reference plane in (b) is of a translated
aperture transmission function, T (x−s, y−t).

from a finite area in a given direction. In order to obtain this
angular distribution, we can invoke the idea of the angular
spectrum from wave optics, which is a decomposition of an
arbitrary scalar field propagating past a plane into a set of
plane waves propagating in various directions. This is in
turn equivalent to the Fourier transform of the scalar field at
that plane[16]. Therefore, we can obtain a measure of the
radiant intensity as seen through the aperture by performing
a Fourier transform of the scalar field and then taking the
magnitude squared of the amplitude of each plane wave to
obtain the power along that direction.

Let us now derive this mathematically. We will omit con-
stant scale factors to simplify notation. The time-varying
scalar field just after the aperture is U(x, y, τ)T (x-s, y-t).
We can derive its angular spectrum by applying the Fourier
transform to our scalar field[16]:

Ũ(u, v, τ)=

∫∫

U(x, y, τ)T (x-s, y-t)e−j2π( u
λ

x+ v
λ

y)dxdy

(9)
where u and v are slopes in x and y respectively, as in Fig.
2, and we’ve applied a small angle approximation for parax-
ial optics. Since we defined the observable light field as the
radiant intensity from an aperture and the radiant intensity
is the intensity of each of the plane waves, we can thus write
the observable light field from aperture T as:

l
(T )
obs (s, t, u, v) =

〈

∣

∣

∣
Ũ(u, v, τ)

∣

∣

∣

2
〉

τ

(10)

3.2. From the Observable Light Field to the Wigner
Distribution

So far, we have derived an expression for the observable
light field in terms of the scalar field and an aperture func-
tion. We now show that this expression is actually a convo-
lution of two Wigner distributions through the following set
of transformations. First, we expand the magnitude squared
of Ũ(u, v, τ) in (10) into a product of complex conjugates:

∫∫∫∫

〈U(x1, y1, τ)U∗(x2, y2, τ)〉τ

× T (x1−s, y1−t)T ∗(x2−s, y2−t)

× e−j2π(u
λ (x1−x2)+

v
λ (y1−y2))dx1dx2dy1dy2 (11)

Rewriting (11) into average and difference variables yields:
∫∫∫∫

〈U(x+ξ
2 , y+η

2 , τ)U∗(x−ξ
2 , y−η

2 , τ)〉τ

× T (x+ ξ
2−s, y+ η

2−t)T ∗(x− ξ
2−s, y− η

2 −t)

× e−j2π(uξ/λ+vη/λ)dxdydξdη

=

∫∫∫∫

JU (x, y, ξ, η)JT (x − s, y − t, ξ, η)

× e−j2π(uξ/λ+vη/λ)dxdydξdη (12)

This is the Fourier transform of a product of two mutual
intensities. By invoking the convolution theorem and the
definition of the Wigner distribution in (1), we can rewrite
(12) as the convolution of two Wigner distributions:

∫∫

WU

(

x, y, ξ
λ , η

λ

)

⊗ξ,ηWT

(

x−s, y−t, ξ
λ , η

λ

)

dxdy

= WU

(

s, t, ξ
λ , η

λ

)

⊗ WT

(

−s,−t, ξ
λ , η

λ

)

(13)

Using the definition of the slope-form Wigner distribution
(8), we arrive at our final result:

l
(T )
obs (s, t, u, v) = Ŵ

(λ)
U (s, t, u, v) ⊗ Ŵ

(λ)
T (-s, -t, u, v)

(14)
Therefore, the observable light field is equivalent to the

slope-form Wigner distribution of the scalar field blurred by
the spatially inverted slope-form Wigner distribution of the
aperture transmission function. To complete our proof of
equivalence between the light field and the Wigner distri-
bution, we must study the effect of this blur caused by the
aperture function.

3.3. The Uncertainty Principle and the Geometric
Optics Limit

The presence of a spatioangular blur in the observable
light field, as shown by the convolution in (14), is a con-
sequence of the uncertainty principle – we cannot observe
precisely both the location and direction of a particle, such



as a photon. Let us look at the extent of this blur by looking
at the spread of the slope-form Wigner distribution.

This spread of the Wigner distribution can be obtained
by treating it as a statistical distribution and looking at its
variance along each axis. The Wigner distribution, while
real, can take on negative values, so it is not entirely accu-
rate to treat it directly as a statistical distribution. However,
we’ll see that this does not negatively impact our results, as
the variance induced by a Wigner distribution is equivalent
to the variance induced by the energy of the original signal.

For this derivation, we will use a one-dimensional unit-
energy signal h(x) and its two-dimensional Wigner distri-
bution Wh(x, fξ) to simplify notation, as the same ideas
can be applied to the two-dimensional signal case and vari-
ance is invariant when a signal is scaled by a constant factor.
For such a signal h(x), the variance σ2

x in x of its Wigner
distribution can be shown to be equal to the variance in x
of the signal’s energy, |h(x)|

2, using only the definition of
variance and properties of the Wigner distribution[6]:

σ2
x =

∫∫

x2Wh(x, fξ)dxdfξ
∫∫

Wh(x, fξ)dxdfξ

=
∫

x2
∫

Wh(x, fξ)dfξdx=
∫

x2|h(x)|2 dx (15)

where the last line is the definition of variance of |h(x)|
2

along x. Through a similar derivation, the variance σ2
fξ

in
fξ of the Wigner distribution can be shown to be equal to the
variance in fξ of the power spectrum of the original signal:

σ2
fξ

=

∫

f2
ξ |H(fξ)|

2
dfξ (16)

One form of the Fourier uncertainty relation[8] states
that the product of the variances along axes related by a
Fourier transform has a lower bound[3]:

(
∫

x2
i |h(~x)|

2
d~x

) (
∫

f2
xi

∣

∣

∣
H( ~fx)

∣

∣

∣

2

d ~fx

)

≥
1

16π2

(17)
where h(~x) is a function from Rn to C and H( ~fx) is its
Fourier transform and xi and fxi

are the ith entries of ~x and
~fx, respectively. Applying (17) to (15) and (16), we obtain:

σ2
xσ2

fξ
≥

1

16π2
(18)

Therefore, it is possible for the Wigner distribution to have
a small extent in either frequency or position, but not both.
For the slope-form Wigner distribution Ŵ

(λ)
h (s, u), we can

apply the coordinate transform inherent in its definition (8)
to obtain a similar uncertainty bound:

σ2
sσ2

u ≥
λ2

16π2
(19)

These bounds illustrate that the slope-form Wigner dis-
tribution cannot be narrow in both s and u. Since the con-
volution kernel in the expression for the observable light

field (14) is a slope-form Wigner distribution, we can think
of the variance along each axis to be the amount of blur in
each axis. Since we have a lower bound for the product of
the variance in s and u, we must trade off blur in s and u
of the observable light field through the selection of an ap-
propriate aperture transmission function. This tradeoff was
reported in [25] for the case of light field microscopy.

However, if we step away from microscopic imaging and
concentrate on macroscopic photographic applications, then
we can make a geometric optics approximation where the
wavelength of light is much smaller than the features in a
scene we are imaging. Specifically, let’s consider the case:

ε2∆s∆u � λ (20)

where ∆s, ∆u are the sizes of features along s, u respec-
tively in the slope-form Wigner distribution of the scalar
field at some plane after the scene, and ε is a small num-
ber. In this case, we can choose an aperture transmission
function for the observable light field where:

∆s � σs , ∆u � σu (21)

and still be able to satisfy (19). Since the features in the
slope-form Wigner distribution of the scalar field are much
larger than the size of the convolution kernel, we can ap-
proximate the convolution kernel with a Dirac delta func-
tion. Applying this approximation to (14), we obtain:

l
(T )
obs (s, u) ≈ Ŵ

(λ)
U (s, u) ⊗ δ(-s, u) = Ŵ

(λ)
U (s, u) (22)

Therefore, at the geometric optics limit, the observable light
field is equal to the slope-form Wigner distribution.

4. Applications

Now that we have derived an expression for the observ-
able light field in terms of Wigner distributions and used
it to show the equivalence between the light field and the
Wigner distribution at the geometric optics limit, let us now
apply these results to real applications. We will first investi-
gate the relationship between the observable light field and
a physical light field capture system, the plenoptic camera.
Then, we will investigate the equivalence between the light
field and the Wigner distribution by looking at similar pa-
pers from both the optics and computer graphics literatures.

4.1. The Aperture and Plenoptic Imaging

The first application we will consider is a light field cap-
ture system that uses an array of microlenses conjugate with
the original imaging plane and an imager conjugate with the
microlenses’ back focal plane[1]. The output of such a sys-
tem is a discrete light field: ldiscrete[m, n, p, q]. The integer
coordinates m, n enumerate which particular microlens the



light passed through to reach the sensor, and the p, q coordi-
nates enumerate which pixel behind microlens is capturing
this light.

The m, n coordinates correspond to the spatial coordi-
nates s, t in the light field and the p, q coordinates corre-
spond to the angular coordinates u, v in the light field. Let
∆m, ∆n be the pitch of the microlenses along the x and y
axes and ∆p, ∆q be the pitch of the imaging pixels along
the same two axes. To simplify notation, we will omit all
constant scale factors in the equations in this section.
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Figure 3. The plenoptic camera consists of a microlens array
(green) placed at the original image plane and an imager (red)
placed at the back focal plane of the microlens array. A partic-
ular value ldiscrete[m, n, p, q] is the total energy of light (blue)
collected by a single pixel (p, q) (filled in red) through a single
microlens (m,n) (filled in green). Each microlens aperture is
∆m × ∆n in size and each pixel is ∆p × ∆q in size. The spa-
tial extent of the pixel causes it to capture a spread of angles in the
scene (gray).

For a particular microlens (m, n), as illustrated in Fig. 3,
the image on the back focal plane is the magnitude squared
of the impinging scalar field’s Fourier transform[16]:

I(x̂, ŷ) =

∣

∣

∣

∣

∫∫

U(x, y)T (x − m∆m, y − n∆n)

× e−j 2π
λf

(xx̂+yŷ)dxdy

∣

∣

∣

∣

2

(23)

where T (x, y) = rect (x/∆m) rect (y/∆n) is the aperture
transmission function of a single microlens and f is its focal
length. Using (9) and (10), we can rewrite (23) as:

I(x̂, ŷ) = l
(T )
obs (m∆m, n∆n, x̂/f, ŷ/f) (24)

The total amount of energy captured by the pixel p, q behind
microlens m, n can then be written as an integral over the
area occupied by a single pixel:

ldiscrete[m, n, p, q]=

∫∫

I(x̂, ŷ)P (x̂−p∆p, ŷ−q∆q)dx̂dŷ

(25)

where P (x̂, ŷ) = rect (x̂/∆p) rect (ŷ/∆q) is a function
that is 1 inside the pixel and 0 outside. Converting imag-
ing coordinates on the back focal plane to slope coordinates
involves setting u = x̂/f and v = ŷ/f . Applying this
transformation to (23) and (25), we obtain:

ldiscrete[m, n, p, q]=
∫∫

l
(T )
obs (m∆m,n∆n,u,v)P̃ (u-p∆u,v-q∆v)dudv

(26)

where P̃ (u, v) = P (uf, vf) is the spread of slopes or an-
gles in the scene that a single pixel captures (illustrated in
gray in Fig. 3), and ∆u = ∆p/f ,∆v = ∆q/f are the new
sampling rates due to the coordinate transformation.

The expression in (26) is that of a convolution followed
by sampling at intervals of ∆m, ∆n, ∆u, ∆v along s, t, u, v.
In other words, the discrete light field captured by this
plenoptic camera is equivalent to a sampled observable light
field with P̃ as a two-dimensional prefilter. Therefore, we
can think of the aperture transmission function as the aper-
ture of a single microlens in a plenoptic camera. Equiva-
lently, since the observable light field is itself a convolution,
evident from (14), we can think of this discrete light field
as a sampled version of the slope-form Wigner distribution
with the following four-dimensional prefilter:

ŴT (−s,−t, u, v) ⊗ P̃ (u, v) (27)

Therefore, analyzing spatioangular tradeoffs in plenoptic
capture systems with novel microlens shapes only requires
computation of the slope-form Wigner distribution of the
aperture transmission function of a single microlens.

There is one thing, however, that we must keep in mind
if we are to use this discrete light field in applications where
we must add samples together, such as in synthesizing fo-
cused images[19]. The observable light field is a function
of only the intensity of the scalar field and does not con-
tain phase information. Therefore, rays in the observable
light field are assumed to be incoherent with respect to each
other, and thus we will not obtain any coherence effects
when summing rays.3

For example, in a double slit system like the one illus-
trated in Fig. 1, we would not obtain interference between
the two slits by adding rays in the observable light field if
our aperture is too small to cover both slits. This is due
to the quadratic nature of the Wigner distribution discussed
earlier in Section 2.

4.2. Image Refocusing

Focused images from a light field can be generated by
integrating rays that intersect a desired focal surface[19], or
through slicing in the Fourier domain[28]. The analogue

3This is not the case in the related fields of synthetic aperture radar
and radio astronomy, where the phase is recorded and used to produce
interference effects that increase the resolution.



in the optics community is the use of slices of the ambigu-
ity function to simulate defocus[30, 9]. Let us see in more
detail how similar the two methods are.
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Figure 4. In order to calculate the image formed at a (x, y) plane
located z behind the (s, t) plane, we can either use the scalar field
measured at the (s, t) plane for a wave optics derivation, or use a
light field with (s, t) being the reference plane and the (u, v) plane
at infinity for a geometric optics derivation. The Fourier transform
of the image formed at the (s, t) plane forms a horizontal slice
(red dashed) of both the ambiguity function of the scalar field (a)
and the Fourier transform of the light field (b), while the Fourier
transform of the image formed at the (x, y) plane forms a tilted
slice (blue solid) of both the ambiguity function (a) and Fourier
transform of the light field (b).

Suppose we have an optical system, as shown in Fig. 4.
The scalar field is measured at the (s, t) plane, and the light
field is measured with the (s, t) plane being the reference
plane and the (u, v) plane at infinity. Our goal is to produce
the image at the (x, y) plane, which is z away from the (s, t)
plane along the optical axis.

Using light fields, we can write the image as:

Igeom(x, y) ∝

∫∫

l(x − uz, y − vz, u, v)dudv (28)

where l(s, t, u, v) is the light field. Using the generalized
Fourier-slice theorem[28], which equates projection in the
original domain with slicing in the Fourier domain, we can
rewrite (28) as a slicing operation:

Igeom(x, y)∝

∫∫

L(fx, fy, zfx, zfy)e
j2π(fxx+fyy)dfxdfy

(29)
where L(fs, ft, fu, fv) is the 4D Fourier transform of the
light field.

Alternatively, using wave optics the image formed at the
(x, y) plane is the inverse Fourier transform of a slice of the

ambiguity function[9]:

Iwave(x, y) ∝

∫∫

AÛ (fx, fy, 0, 0)ej2π(fxx+fyy)dfxdfy

(30)
where AÛ (fx, fy, ξ, η) is the ambiguity function of the
scalar field Û(x, y) at the (x, y) plane. This ambiguity func-
tion can be written in terms of the ambiguity function of the
scalar field U(s, t) at the (s, t) plane through a coordinate
transformation[30]:

AÛ (fx, fy, ξ, η) = AU (fx, fy, ξ − zλfx, η − zλfy) (31)

where AU (fs, ft, σ, τ) is the ambiguity function for the
scalar field U(s, t) at the (s, t) plane. Substituting (31) into
(30), we obtain:

Iwave(x,y)∝

∫∫

AU (fx,fy, -zλfx, -zλfy)e
j2π(fxx+fyy)dfxdfy

(32)
This is also a slicing operation, like (29). To highlight the
equivalence of (29) and (32), we can rewrite (32) in a form
analogous to (29):

Iwave(x, y)∝

∫∫

L̂U (fx, fy, zfx, zfy)e
j2π(fxx+fyy)dfxdfy

(33)
where L̂U is the 4D Fourier transform of the slope-form
Wigner distribution and is proportional to the ambiguity
function after a coordinate change, i.e.:

L̂U (fs, ft, fu, fv) =
∫∫∫∫

Ŵ
(λ)
U (s, t, u, v)

×ej2π(fss+ftt+fuu+fvv)dsdtdudv

=

∫∫∫∫

WU

(

s, t,
u

λ
,
v

λ

)

×ej2π(fss+ftt+fuu+fvv)dsdtdudv

= λ2AU (fs, ft,−λfu,−λfv) (34)

4.3. Cubic Phase Plate Wavefront Coding

Dowski and Cathey have proposed an optical system us-
ing a cubic phase plate, which after digital processing pro-
duces an image with extended depth of field[11]. This is
accomplished by creating an intentionally aberrant point
spread function (PSF) that varies little with defocus, then
deconvolving with that PSF. The original analysis was con-
ducted using slices of the ambiguity function, but we can
conduct a similar analysis using light fields. Let us restrict
ourselves to flatland to simplify the notation.

Fig. 5 shows the setup of the optical system. A convex
lens with focal length f is placed at the z=f plane in order
to create the Fourier transform at the z=2f plane of a point
source at the z = 0 plane. We then pass the light through a
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Figure 5. In an optical system used for extended depth of field
wavefront coding, light from a single point (a) passes through a
Fourier transforming convex lens (b), a cubic phase plate (c) and
another Fourier transforming convex lens (d) to arrive at an inten-
tionally aberrant point spread function. The PSF at plane (e) varies
very little from the PSF at plane (f).

cubic phase plate with thickness ∆(x) = αx3

k(n−1) where n is
the index of refraction of the plate and k = 2π

λ is the wave
number of the light. This results in a phase delay of αx3.
Finally, we place another lens at z =3f to create at z =4f
the Fourier transform of the scalar field immediately after
the cubic phase plate. This produces an aberrant PSF that is
roughly focus-invariant. Hence, deconvolving after image
capture will result in an image with extended depth of field.

In [11], Dowski and Cathey derive an expression for the
ambiguity function of a scalar field created by the cubic
phase plate. They argue that since slices through the am-
biguity function vary little with the slope of the slice, the
PSF generated for various degrees of misfocus must also
vary little with slope, since the ambiguity function is a rep-
resentation of the Fourier transform of the PSF at various
degrees of defocus[9].

We can form a similar argument using a light field
derivation. At the z =0 plane, suppose we have a single
point emitter. Our light field is thus a line embedded in 2D:

l0(s, u) = δ(s) (35)

Propagating to the right by f , passing through a lens of focal
length f , and then propagating again to the right by f results
in a cumulative ray transfer matrix[17] of:

(

sin

uin

)

=

(

0 −f
1/f 0

) (

sout

uout

)

(36)

Hence, the light field immediately before the cubic phase
plate can be written as:

l2f−(s, u) = l0(−uf, s/f) = δ(−uf) (37)

An arbitrary phase plate with phase delay φ(s) incurs the
following transformation on the light field:

lout(s, u) = lin

(

s, u− ∂φ(s)
∂s λ/2π

)

(38)

The cubic phase plate in this system has a phase delay of the
form φ(s) = αs3. Therefore, by differentiating this phase
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Figure 6. The impulse response, taken at z = 4f , of the cubic
phase plate system, viewed as a Wigner distribution (a), an am-
biguity function (b), a light field (c), and its Fourier transform
(d). Horizontal (red dashed) and tilted (blue) slices (e) through
the ambiguity function are very similar in magnitude. The same is
true for slices (f) through the Fourier transform of the light field.
These results were generated numerically and thus only simulate
a finitely large cubic phase plate. An analytic derivation for the
Wigner distribution is available in Appendix A. The ambiguity
function (b) is derived and used in [11], while the light field (c)
and its Fourier transform (d) are derived and used in [23, 21].

function according to (38), we obtain a light field immedi-
ately after the phase plate that is only nonzero on a parabola:

l2f+(s, u) = l2f−

(

s, u − 3αs2λ/2π
)

= l0
(

−f
(

u − 3αs2λ/2π
)

, s/f
)

= δ
[

−f
(

u − 3αs2λ/2π
)]

(39)

Finally, applying (36) for the lens at z = 3f , we find that
the light field at z=4f is also zero everywhere except for a
parabola, as shown in (c) of Fig. 6:

l4f (s, u) = l2f+ (−uf, s/f)

= l0
(

−s + 3αu2f3λ/2π,−u
)

= δ
[

−s + 3αu2f3λ/2π
]

(40)

This result was independently derived in Appendix A of
[22] and illustrated in Fig. 1 (i) of [21]. Using (28), the



PSF of this system at z = 4f is a projection along u, v of
the light field at z =4f , while the PSF at some other plane
z = 4f + ∆z is the projection along u, v of a shear of the
light field. One property of a parabola is that it only trans-
lates when sheared. Therefore, the projection of a sheared
parabola is a shifted projection of the original parabola[23].
Hence, for two different planes, we have shown that the PSF
only varies up to a spatial shift.

The magnitude of the Fourier transform of the PSF, the
magnitude transfer function, would be the same for the two
planes, since shifts in position only cause linear phase shifts
in the Fourier transform. Using the generalized Fourier
slice theorem[28], which states that the Fourier transform
of a projection of a function is equivalent to a slice of the
Fourier transform of the same function, we can also say that
different slices of the Fourier transform of the light field of
this system have the same magnitude. This is analogous to
Dowski and Cathey’s argument that slices of the ambiguity
function at different slopes have the same magnitude.

The visual similarities, shown in Fig. 6, between the
light field and the Wigner distribution (derivation in Ap-
pendix A), and between the Fourier transform of the light
field and the ambiguity function are the result of the equiva-
lence we showed in Section 3. Thus, it is possible to analyze
the depth-invariance properties of a cubic phase mask using
only the light field.

5. Conclusion and Future Work

We’ve shown that analysis using the light field in geo-
metric optics is analogous to analysis using the Wigner dis-
tribution in wave optics. Therefore, when reading through
the optics literature, the reader can associate the concept of
a Wigner distribution with the light field and the concept
of an ambiguity function with the Fourier transform of the
light field and vice versa.

With this equivalence in mind, we may want to thor-
oughly explore current research topics in light fields using
wave optics. For example, it may be interesting to modify
the analysis of scene extraction from various imaging con-
figurations in [21] to include diffraction effects. Further-
more, diffraction effects may alter the benefits and draw-
backs in light field capture using dappled photography[31].
Lastly, while we’ve mainly analyzed light field capture and
its coherence properties, we have not looked closely at light
field generation and its coherence properties, which may be
important for simulating certain types of illumination.

It may also be useful to find papers in the optics litera-
ture on Wigner distributions that can also be applied to light
fields. For instance, there are various optical devices for
capturing Wigner distributions[4, 26]. In particular, the de-
vice in [26] has no parallel in the computer graphics litera-
ture. It uses optical phase conjugators, a nonlinear optical
element that inverts the phase of an incoming scalar field,

to produce the Wigner distribution optically. It would be
interesting to adapt systems like this for light field capture.

Conversely, it may be useful to adapt some of the work
done on light fields to the optics literature. For example,
a three-dimensional manifold inside the Fourier transform
of the light field is both the only region of interest for fo-
cused image generation[28] and the only nonzero region
for an isotropically emitting medium[25]. These ideas may
make capture of the Wigner distribution for coherent imag-
ing analysis faster under certain situations.

Lastly, it may be useful to compare different solutions to
the same problem in the optics and computer graphics lit-
erature for performance tradeoffs. For example, plenoptic
imaging can also be used to extend the depth of field[29] us-
ing the approach in [2], which is different from [11]. Being
able to compare the signal-to-noise performance as a func-
tion of spatial frequency in the two methods will enable the
selection of the right method for the right situation when an
extended depth of field image is needed. Furthermore, this
comparison may yield further insights into extended depth
of field imaging.

Just as the Wigner distribution and the ambiguity func-
tion were originally developed for quantum mechanics and
radar imaging, respectively, and then later adapted to opti-
cal analysis, adaptation of these representations to computer
graphics may bear further fruit.
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A. Wigner Distribution of a Cubic Phase Plate

Deriving the cubic phase plate system’s output Wigner
distribution will allow us to further explore its similarity
with the light field. The scalar field right after the phase
plate is ejαx3 and its Wigner distribution can be obtained
using the derivation given in (8.47)-(8.52) of [10]:

W 2f+
U (x,fξ)=2π

(

12
α

)1/3
Ai

(

(

12
α

)1/3[
3αx2-2πfξ

]

)

(41)

where Ai(x) = 1
π

∫

∞

0
cos(u3/3 + xu)du is the Airy func-

tion. Passing this scalar field through a Fourier transform
system results in a 90 degree rotation of the Wigner distribu-
tion through the application of ray transfer matrices[17, 5]:

W 4f
U (x,fξ)=2π

(

12
α

)1/3
Ai

(

(

12
α

)1/3
[3αλ2f2

ξ f2- 2πx
λf ]

)

(42)

This Wigner distribution we obtain, shown in Fig. 6 (a), is
the convolution of a two-dimensional function:

δ
(

x − 3αλ2f2
ξ f3 λ

2π

)

(43)



that is only nonzero on a parabola, with an Airy function:

2π
(

12
α

)1/3
Ai

(

−
(

12
α

)1/3
2πx

)

(44)

The parabola in (43) is the same as the one in (40) after
converting slopes to frequencies as per (8).
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