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Why Study Light Fields Using Wave Optics?
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Outline

• review light fields and wave optics

• observable light field and 
the Wigner distribution

• applications
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Light Fields

• radiance per ray

• ray parametrization:

• position (s)

• direction (u)
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Light Fields

• Radiance per ray

• Ray parametrization:

• Position
 : s, x, r 

• Direction
 : u, θ, s

Reference
plane

position
direction

Goal: Representing propagation, interaction and image formation of light 
using purely position and angle parameters

7



Light Fields

• radiance per ray

• ray parametrization:

• position (s)

• direction (u)

reference
plane

position

direction

8



Wave Optics

• waves instead of rays

• interference, diffraction

• plane of point emitters 
(Huygen’s principle)

• each emitter has 
amplitude and phase

parallel rays plane waves
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Wave Optics
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• plane of point emitters 
(Huygen’s principle)
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Position and Direction 
in Wave Optics

• recall: light field 
describes how power 
is spread over 
position and direction

• point emitters on 
plane have amplitude 
and phase

• positional spread is
amplitude squared

U(x) = A(x)ejφ(x)
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Position and Direction 
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Position and Direction 
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Position and Direction 
in Wave Optics

aperture = 4 wavelengths
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Position and Direction 
in Wave Optics

aperture = 2 wavelengths
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Position and Direction 
in Wave Optics
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Recap

•  

• to determine both position and 
spatial frequency, need to look at a window
of finite (nonzero) width

ray optics position direction

wave optics position spatial frequency
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2D Wigner Distribution
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2D Wigner Distribution

• input: one-dimensional function of position

• output: two-dimensional function of 
position and frequency

• (some) information about spectrum at each 
position

Wh(x, fξ) =
∫

h
(
x + ξ

2

)
h∗

(
x− ξ

2

)
e−j2πfξξdξ
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x

fξ
Wh (x, fξ)

2D Wigner Distribution

• projection along frequency 
yields power

• projection along position 
yields spectral power
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yields power

• projection along position 
yields spectral power
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x

fξ

Wh (x, fξ)

2D Wigner Distribution

x

|h(x)|2

|H (fξ)|2

fξ

• tradeoff between 
width and height
(fixed “area” or
space-bandwidth product)

• uncertainty principle
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2D Wigner Distribution

• information about both 
position and frequency

• fixed space-bandwidth product

Wh(x, fξ) =
∫

h
(
x + ξ

2

)
h∗

(
x− ξ

2

)
e−j2πfξξdξ
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Observable Light Field

• move aperture 
across plane 

• look at 
directional 
spread

• continuous 
form of 
plenoptic 
camera

scene
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Observable Light Field

• move aperture 
across plane 

• look at 
directional 
spread

• continuous 
form of 
plenoptic 
camera

scene

aperture
position s

direction u
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WDF

Traditional 
light field

Augmented 
LFObservable LF

Rihaczek
Distribution 

Function

Space of LF representations
Time-frequency representations
Phase space representations
Quasi light field

incoherent

coherent

Other LF 
representations

Other LF 
representations
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Property of the Representation

Constant along 
rays Non-negativity Coherence Wavelength Interference 

Cross term

Traditional LF always 
constant always positive only 

incoherent zero no

Observable LF nearly constant always positive any coherence 
state any yes

Augmented LF only in the 
paraxial region

positive and 
negative any any yes

WDF only in the 
paraxial region

positive and 
negative any any yes

Rihaczek DF no; linear drift complex any any reduced
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Benefits & Limitations of the 
Representation

Ability to 
propagate

Modeling 
wave optics

Simplicity of 
computation

Adaptability 
to current 
pipe line

Near Field Far Field

Traditional 
LF x-shear no very simple high no yes

Observable 
LF not x-shear yes modest low yes yes

Augmented 
LF x-shear yes modest high no yes

WDF x-shear yes modest low yes yes

Rihaczek DF x-shear yes
better than 
WDF, not as 
simple as LF

low no yes
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Observable Light Field

l(T )
obs (s, u) =

∣∣∣∣
∫

U(x)T (x− s)e−j2π u
λ xdx

∣∣∣∣
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Observable Light Field

wave Fourier transform

aperture window
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Observable Light Field

l(T )
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resolution in position

with direction
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l(T )
obs (s, u) = WU

(
s, u

λ

)
WT

(
−s, u

λ

)
⊗

Observable Light Field

Wigner distribution 
of wave function

Wigner distribution
of aperture window

at zero wavelength limit
(regime of ray optics)
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l(T )
obs (s, u) = WU

(
s, u

λ

)
⊗ δ(−s, u)

Observable Light Field

Wigner distribution 
of wave function

at zero wavelength limit
(regime of ray optics)
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l(T )
obs (s, u) = WU

(
s, u

λ

)

Observable Light Field

at zero wavelength limit
(regime of ray optics)

observable light field and Wigner equivalent!
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Observable Light Field

• observable light field is a 
blurred Wigner distribution with a
modified coordinate system

• blur trades off resolution in 
position with direction

• Wigner distribution and observable light 
field equivalent at zero wavelength limit
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Application - Refocusing

s

u

light
field

40



Application - Refocusing

s

u
Isaksen 
et. al 
2000
light
field

40



Application - Refocusing

s

u

image at z=0

Isaksen 
et. al 
2000
light
field

40



Application - Refocusing

s

u

image at z=z0

Isaksen 
et. al 
2000
light
field

40



Application - Refocusing

s

u

Fourier fs

fu
Isaksen 
et. al 
2000
light
field

light
field

spectrum

40



Application - Refocusing

s

u

Fourier fs

fu
Isaksen 
et. al 
2000

Ng 
2005

light
field

light
field

spectrum

40



Application - Refocusing

s

u

Fourier fs

fu

image at z=0

Isaksen 
et. al 
2000

Ng 
2005

light
field

light
field

spectrum

40



Application - Refocusing

s

u

Fourier fs

fu

image at z=z0

Isaksen 
et. al 
2000

Ng 
2005

light
field

light
field

spectrum

40



fξ

x

Application - Refocusing

s

u

Fourier fs

fu
Isaksen 
et. al 
2000

Ng 
2005

fx

ξ

Fourier

light
field

light
field

spectrum

Wigner
distribution

ambiguity
function

40



fξ

x

Application - Refocusing

s

u

Fourier fs

fu
Isaksen 
et. al 
2000

Ng 
2005

image at z=0

fx

ξ

Fourier

light
field

light
field

spectrum

Wigner
distribution

ambiguity
function

40



fξ

x

Application - Refocusing

s

u

Fourier fs

fu
Isaksen 
et. al 
2000

Ng 
2005

image at z=z0

fx

ξ

Fourier

light
field

light
field

spectrum

Wigner
distribution

ambiguity
function

40



fξ

x

Application - Refocusing

s

u

Fourier fs

fu
Isaksen 
et. al 
2000

Ng 
2005

fx

ξ

Fourier

image at z=0

light
field

light
field

spectrum

Wigner
distribution

ambiguity
function

40



fξ

x

Application - Refocusing

s

u

Fourier fs

fu
Isaksen 
et. al 
2000

Ng 
2005

fx

ξ

Fourier

image at z=z0

light
field

light
field

spectrum

Wigner
distribution

ambiguity
function

40



fξ

x

Application - Refocusing

s

u

Fourier fs

fu
Isaksen 
et. al 
2000

Ng 
2005

fx

ξ

Fourier

Papoulis
1974

light
field

light
field

spectrum

Wigner
distribution

ambiguity
function

40



Application - Wavefront Coding

Dowski and Cathey 1995

same aberrant blur regardless of depth of focus
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Application - Wavefront Coding

Dowski and Cathey 1995

same aberrant blur regardless of depth of focus

cubic
phase plate

point
in scene

small change
in blur shape
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Application - Wavefront Coding

ambiguity
function

slices corresponding
to various depths
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• blur shape invariant
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Application - Wavefront Coding

Fourier transform
of light field

slices corresponding
to various depths
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Application - Wavefront Coding

Wigner distribution
for cubic phase plate system
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Conclusions

• light field’s position and direction = 
wave optics’s position and frequency

• observable light field = 
blurred Wigner distribution
(equal at zero wavelength limit)

• analysis using light fields and 
Wigner distribution interchangeable
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Further Reading

• http://scripts.mit.edu/~raskar/lightfields/

Wiki for this course

• Z. Zhang, M. Levoy, “Wigner Distributions 
and How They Relate to the Light Field”, 
ICCP 2009
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Future Work

• analyze various light field capture and 
generation systems using wave optics

• rendering wave optics phenomena

• adapt more ideas from 
optics community
and vice versa!
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