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Qutline

® review light fields and wave optics

® observable light field and
the Wigner distribution

® applications
PP




Light Fields

® radiance per ray
® ray parametrization:

® position (s)

® direction (u)
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Light Fields

Goal: Representing propagation, interaction and image formation of light
using purely position and angle parameters

® Radiance per ray

® Ray parametrization:

o
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® Position  :s,Xx,r PEEtgIeN

® Direction :u, 0,s

Reference
plane
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Wave Optics

parallel rays plane waves
® waves instead of rays

® interference, diffraction

VYVYVYYYYYVYY

® plane of point emitters
(Huygen’s principle)

® cach emitter has
amplitude and phase
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Wave Optics

® waves instead of rays
® interference, diffraction

® plane of point emitters
(Huygen’s principle)

® cach emitter has
amplitude and phase

U(z) = A(z)e?®®




Position and Direction
in Wave Optics

® recall: light field
describes how power
is spread over

position and direction U(ZIZ’) _ A(x)ejqb(x)

® point emitters on
plane have amplitude
and phase

® positional spread is
amplitude squared
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Position and Direction
in Wave Optics

® recall: light field
describes how power
is spread over

position and direction U(ZIZ’) _ A(m)ejqb(x)

® point emitters on

plane have amplitude I(x) = A ()
and phase

® positional spread is
amplitude squared
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Position and Direction
in Wave Optics
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Position and Direction
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Position and Direction
in Wave Optics

axial oblique more oblique
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Position and Direction
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plane waves

|

K

|




Position and Direction
in Wave Optics

plane waves




Position and Direction
in Wave Optics

 —

aperture = |28 wavelengths



Position and Direction
in Wave Optics

aperture = 64 wavelengths



Position and Direction
in Wave Optics

aperture = 32 wavelengths



Position and Direction
in Wave Optics

aperture = |6 wavelengths




Position and Direction
in Wave Optics

aperture = 8 wavelengths
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aperture = 4 wavelengths




Position and Direction
in Wave Optics

aperture = 2 wavelengths




Position and Direction
in Wave Optics




Recap

ray optics position direction

wave optics position spatial frequency

® to determine both position and
spatial frequency, need to look at a window
of finite (nonzero) width
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2D Wigner Distribution
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2D Wigner Distribution

Wi (2, fe) = / (2 +§) e (2= §) 72 0esag

® input: one-dimensional function of position

® output: two-dimensional function of
position and frequency

® (some) information about spectrum at each
position




2D Wigner Distribution

® projection along frequency
yields power

® projection along position
yields spectral power

ff Wi, (:Evff)
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LI projection along frequency
H yields power

® projection along position
yields spectral power
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2D Wigner Distribution

LI projection along frequency
H yields power

® projection along position
yields spectral power
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2D Wigner Distribution

h(z)|> @ tradeoff between

H width and height

(fixed “area” or
space-bandwidth product)

® uncertainty principle
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2D Wigner Distribution

Wi (2, fe) = / (2 +§) e (2= §) 72 0esag

® information about both
position and frequency

® fixed space-bandwidth product




Observable Light Field

® move aperture
across plane

® |ook at
directional
spread

® continuous scene
form of
plenoptic
camera
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Observable Light Field

® move aperture
across plane

® |ook at
directional
spread

® continuous scene
form of
plenoptic

camera aperture —
position s

direction u




Space of LF representations
Time-frequency representations

Phase space representations
Quasi light field

Other LF
representations

Other LF
representations

Traditional
light field

incoherent

coherent




Property of the Representation

Constant along
rays

Traditional LF

Observable LF

only in the

Non-negativity

Coherence

Wavelength

Ieterference
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Augmented LF | SR S8 ion R(e)ggtli\ceeand any any yes
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Rihaczek DF




Benefits & Limitations of the

Representation
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Observable Light Field
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obs
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Fourier transform
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Observable Light Field

aperture window
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Observable Light Field

2
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Observable Light Field

2

Z(T)(s,u) = /U(CE)T(QZ — 5)e TN dy

obs

blur trades off
resolution in position
with direction

Lope (5, 1) Z/WU (5, %) @ Wr (=, %)

Wigner distribution  Wigner distribution
of wave function  of aperture window

obs




Observable Light Field

at zero wavelength limit
(regime of ray optics)

Z(T)(S,U) = Wy (S, %) Q W (—3, %)

/ i

Wigner distribution  Wigner distribution
of wave function  of aperture window




Observable Light Field

at zero wavelength limit
(regime of ray optics)

I5pe (5,0) = Wy (5, %) ® 0(—s,u)
/

Wigner distribution
of wave function



Observable Light Field

at zero wavelength limit
(regime of ray optics)

observable light field and Wigner equivalent!



Observable Light Field

® observable light field is a
blurred Wigner distribution with a
modified coordinate system

® blur trades off resolution in
position with direction

® Wigner distribution and observable light
field equivalent at zero wavelength limit




Application - Refocusing
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Application - Wavefront Coding

Dowski and Cathey 1995

1 M

point cubic small change
in scene phase plate in blur shape

same aberrant blur regardless of depth of focus



Application - Wavefront Coding

slices corresponding

I to various depths
ambiguity

function
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Application - Wavefront Coding

point after phase plate




Application - Wavefront Coding

point after phase plate at image
plane




Application - Wavefront Coding
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point after phase plate at image
plane




Application - Wavefront Coding

® refocusing in
ray space is shearing

® shearing of a parabola g
results in translation

® blur shape invariant
to refocusing
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Application - Wavefront Coding

slices corresponding

. to various depths
Fourier transform

of light field




Application - Wavefront Coding

¢
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Wigner distribution
for cubic phase plate system




Conclusions

® |ight field’s position and direction =
wave optics’s position and frequency

® observable light field =
blurred Wigner distribution
(equal at zero wavelength limit)

® analysis using light fields and
Wigner distribution interchangeable




Further Reading

® http://scripts.mit.edu/~raskar/lightfields/

Wiki for this course

® /. /Zhang, M. Levoy, “Wigner Distributions

and How They Relate to the Light Field”,
ICCP 2009




Future Work

® analyze various light field capture and
generation systems using wave optics

® rendering wave optics phenomena

® adapt more ideas from
optics community
and vice versa!
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