Light Fields in Ray and Wave Optics

Introduction to Light Fields:	Ramesh Raskar
Wigner Distribution Function to explain Light Fields:	Zhengyun Zhang
Augmenting LF to explain Wigner Distribution Function:	Se Baek Oh
Q&A	
Break	
Light Fields with Coherent Light:	Anthony Accardi
New Opportunities and Applications:	Raskar and Oh
Q&A:	All

CVPR 2009 Short Course Light Fields: Present and Future (Computational Photography)

Using Wigner Distributions to Explain Light Fields

Zhengyun Zhang Stanford University

IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2009

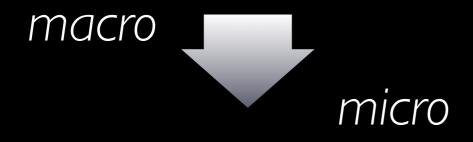
Light Fields and Wave Optics

Zhengyun Zhang Stanford University

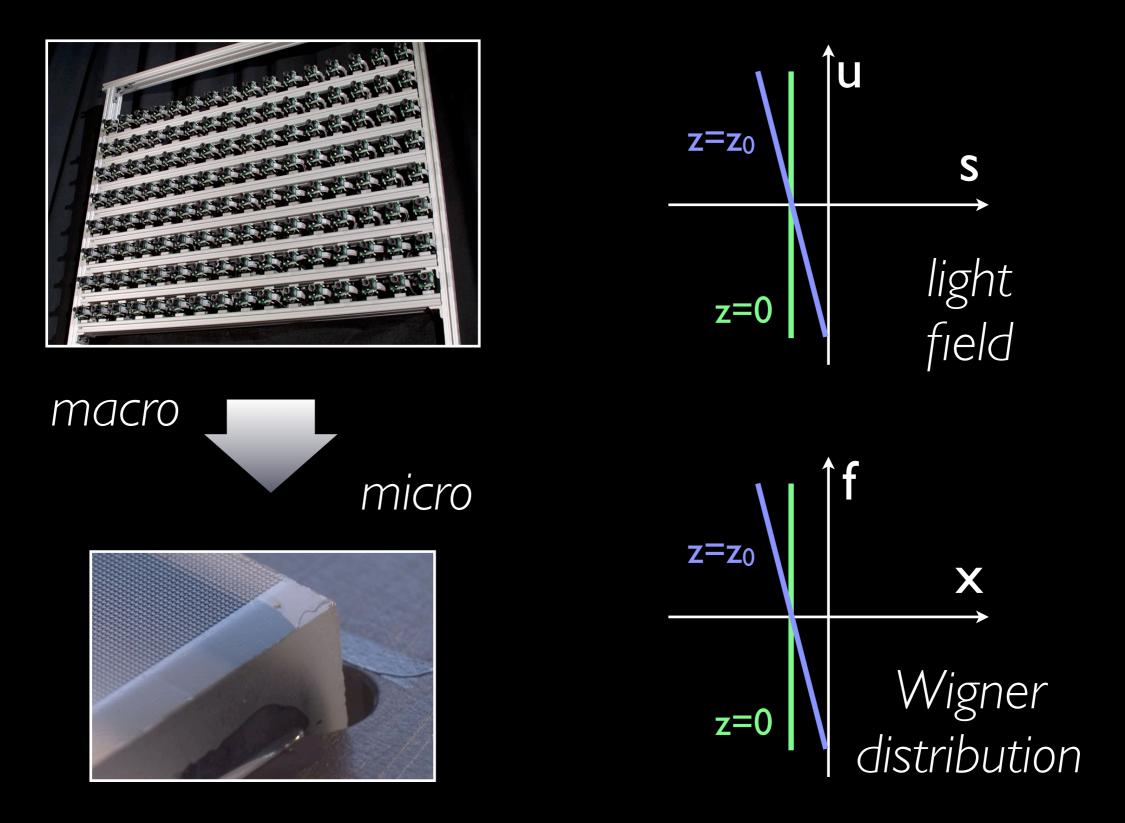
IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2009

Why Study Light Fields Using Wave Optics?

Why Study Light Fields Using Wave Optics?



Why Study Light Fields Using Wave Optics?

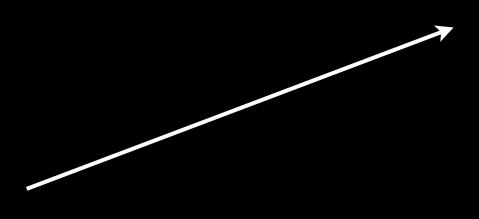


Outline

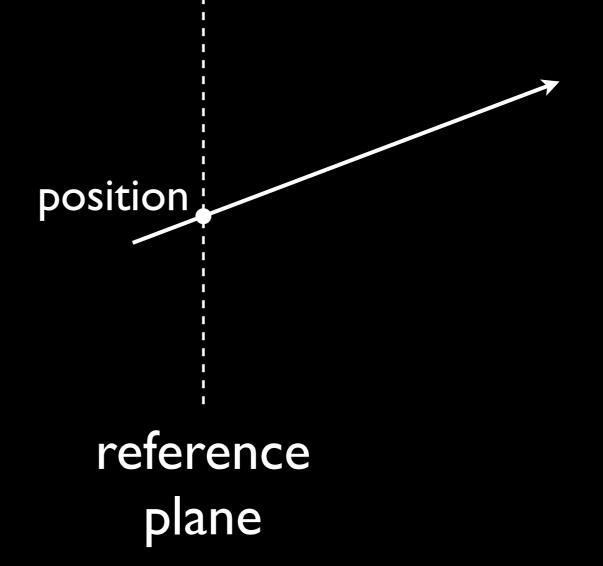
- review light fields and wave optics
- observable light field and the Wigner distribution
- applications

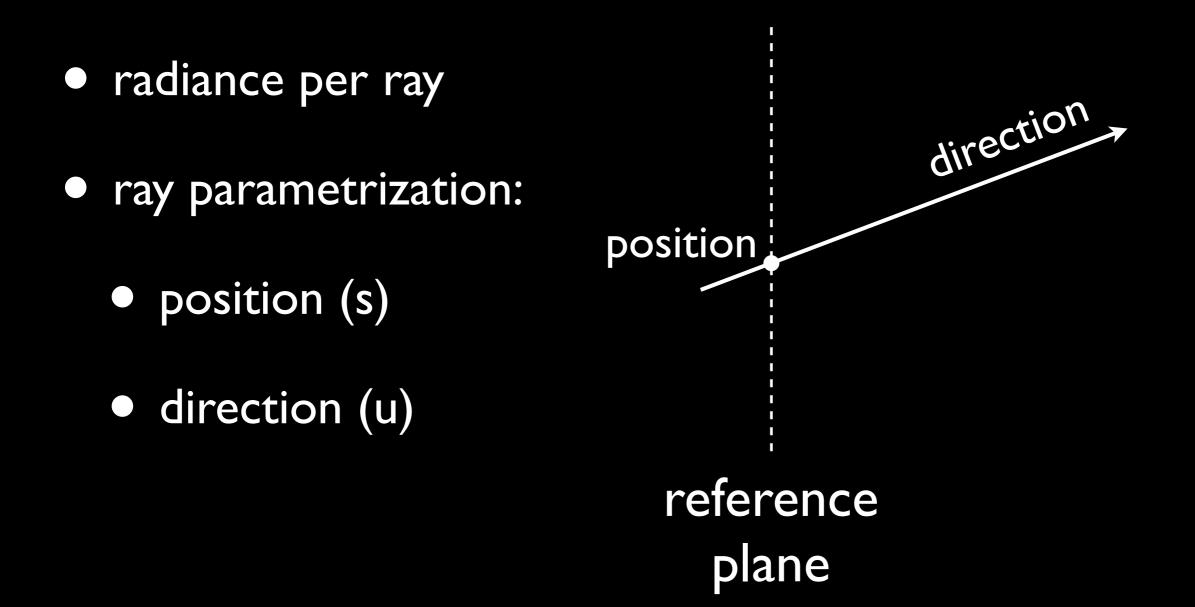
- radiance per ray
- ray parametrization:
 - position (s)
 - direction (u)

- radiance per ray
- ray parametrization:
 - position (s)
 - direction (u)



- radiance per ray
- ray parametrization:
 - position (s)
 - direction (u)





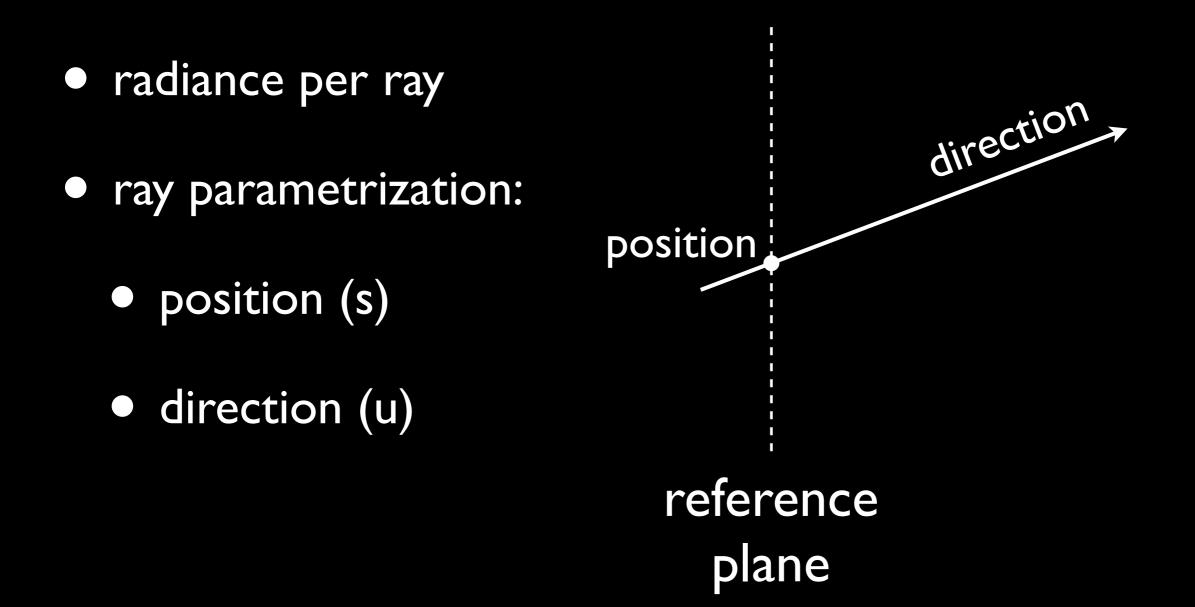
Goal: Representing propagation, interaction and image formation of light using <u>purely position and angle parameters</u>

Radiance per ray
Ray parametrization:

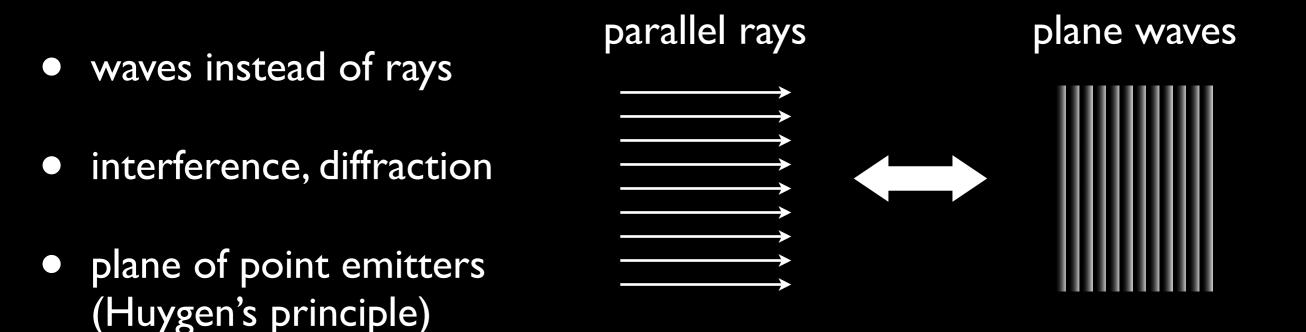
Position : s, x, r
Direction : u, θ, s

Reference

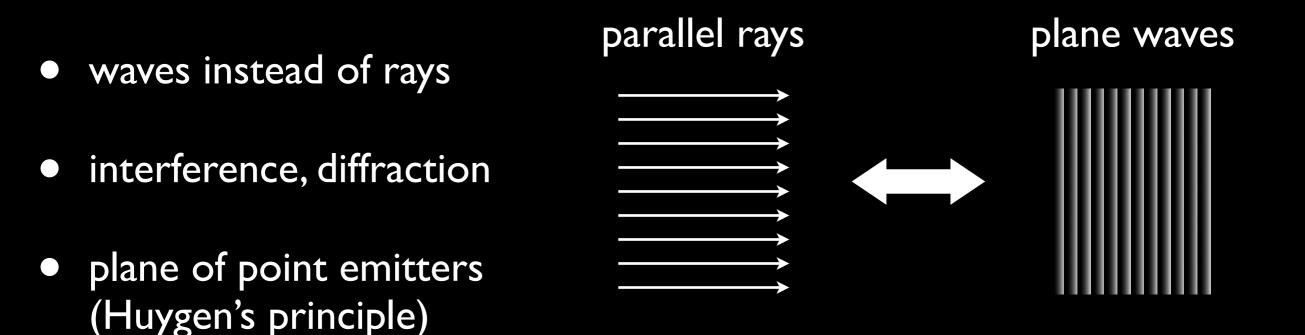
plane



Wave Optics



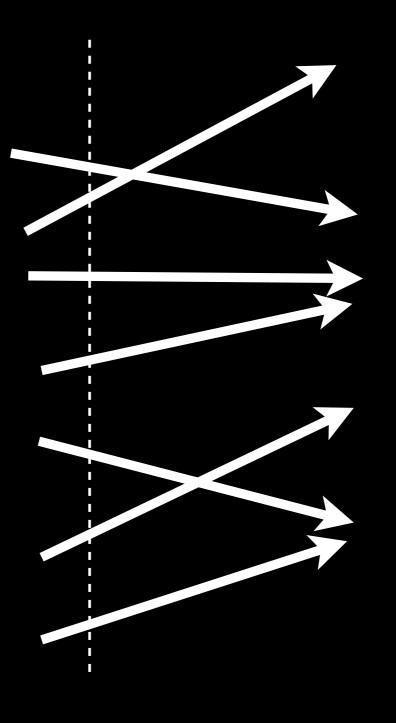
 each emitter has amplitude and phase



 each emitter has amplitude and phase

- waves instead of rays
- interference, diffraction
- plane of point emitters (Huygen's principle)
- each emitter has amplitude and phase

- waves instead of rays
- interference, diffraction
- plane of point emitters (Huygen's principle)
- each emitter has amplitude and phase



- waves instead of rays
- interference, diffraction
- plane of point emitters (Huygen's principle)
- each emitter has amplitude and phase

 $U(x) = A(x)e^{j\phi(x)}$

 recall: light field describes how power is spread over position and direction

 $U(x) = A(x)e^{j\phi(x)}$

- point emitters on plane have amplitude and phase
- positional spread is amplitude squared

- recall: light field describes how power is spread over position and direction
- point emitters on plane have amplitude and phase

$$U(x) = A(x)e^{j\phi(x)}$$
$$I(x) = |A(x)e^{j\phi(x)}|^{2}$$

 positional spread is amplitude squared

- recall: light field describes how power is spread over position and direction
- point emitters on plane have amplitude and phase
- positional spread is amplitude squared

$$U(x) = A(x)e^{j\phi(x)}$$

$$I(x) = A^2(x)$$

direction

• axial

- oblique
- more oblique

direction

• axial

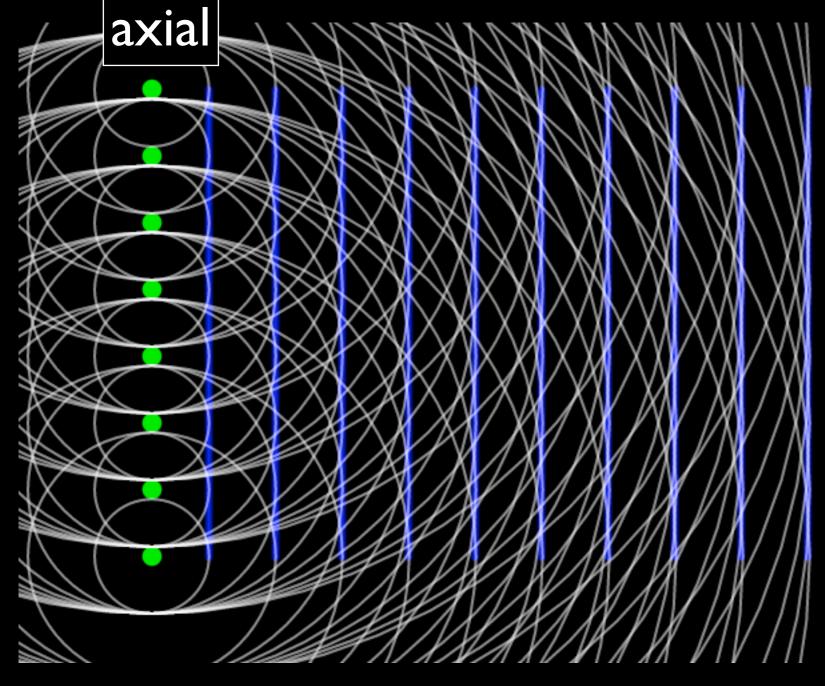
- oblique
- more oblique

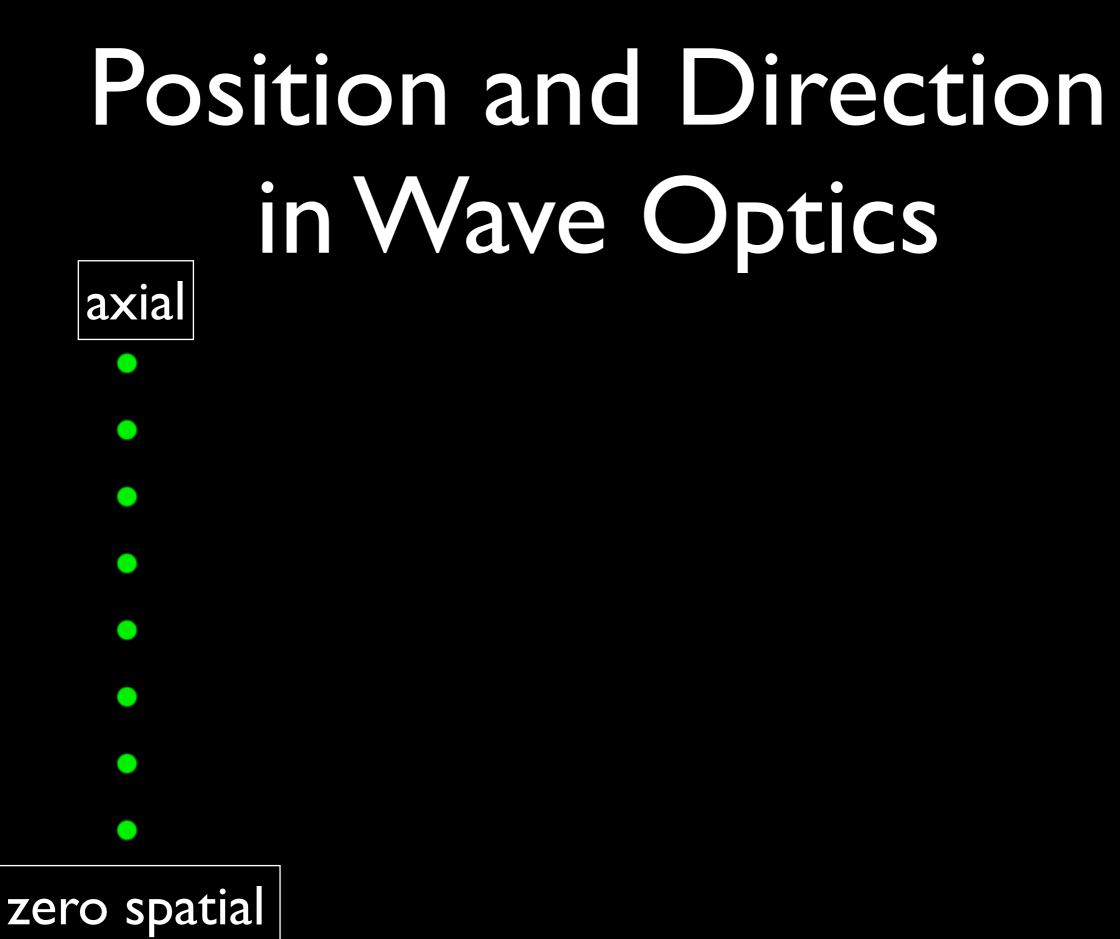
- direction
 - axial
 - oblique
 - more oblique

- direction
 - axial
 - oblique
 - more oblique

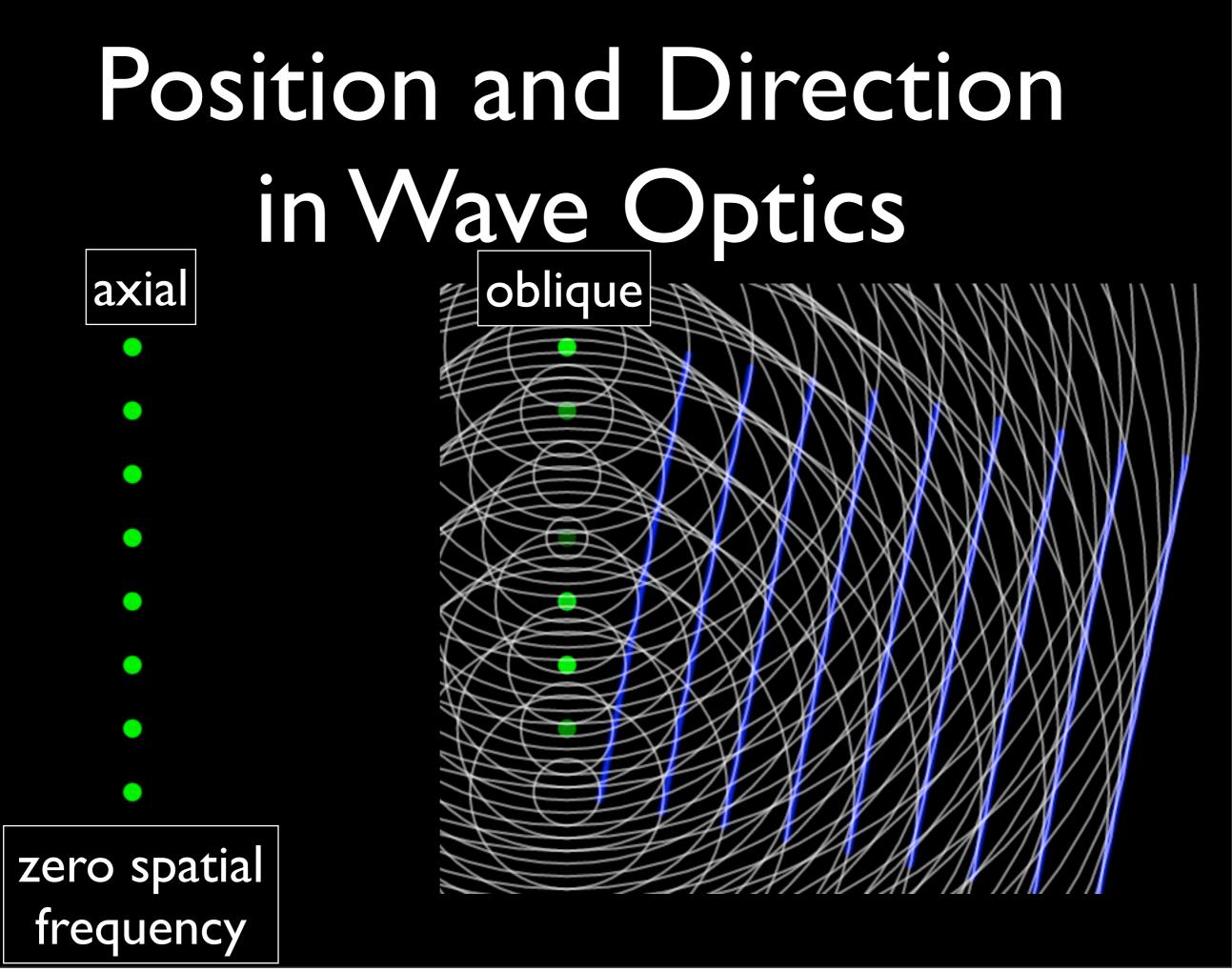
- direction
 - axial
 - oblique
 - more oblique

- direction
 - axial
 - oblique
 - more oblique

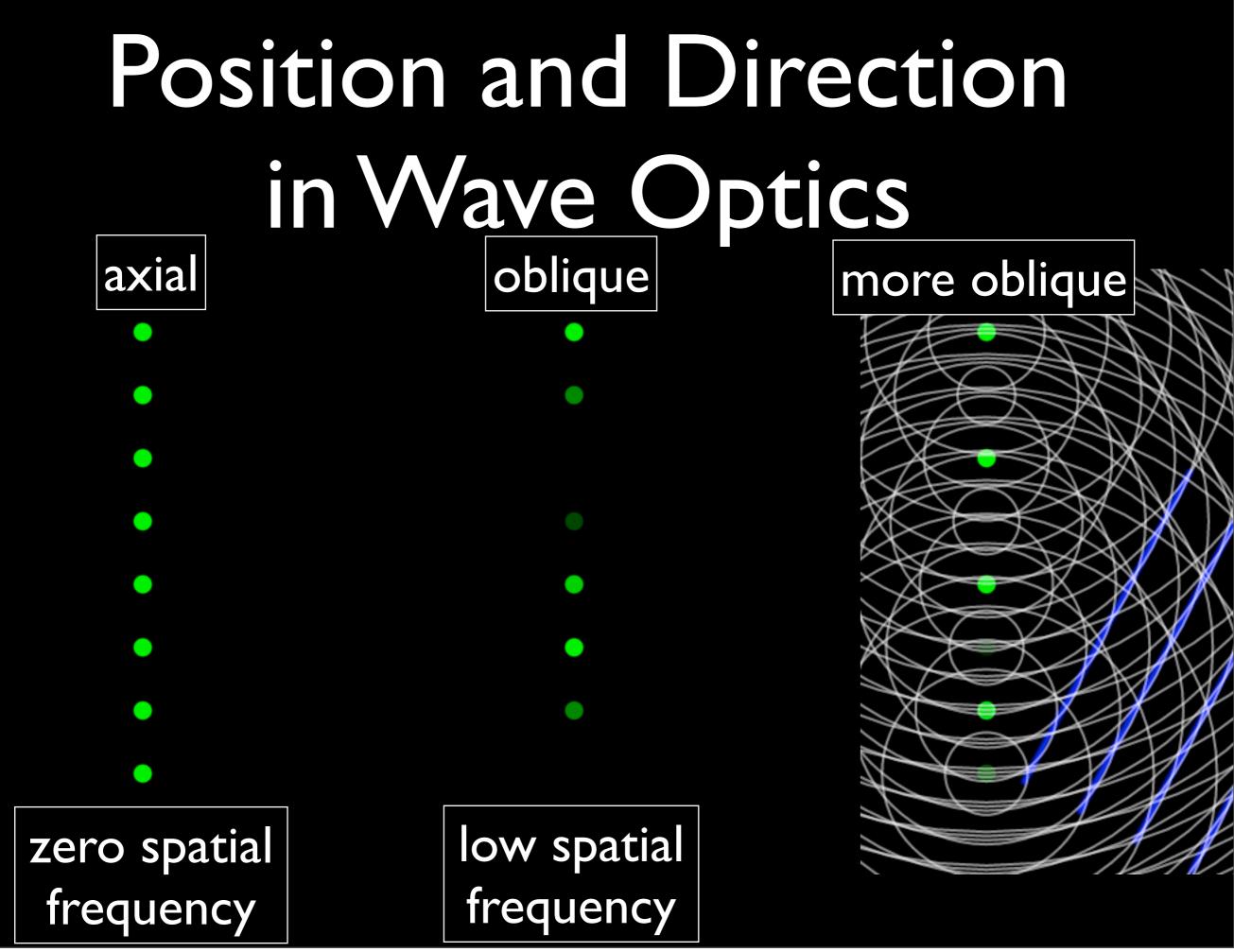


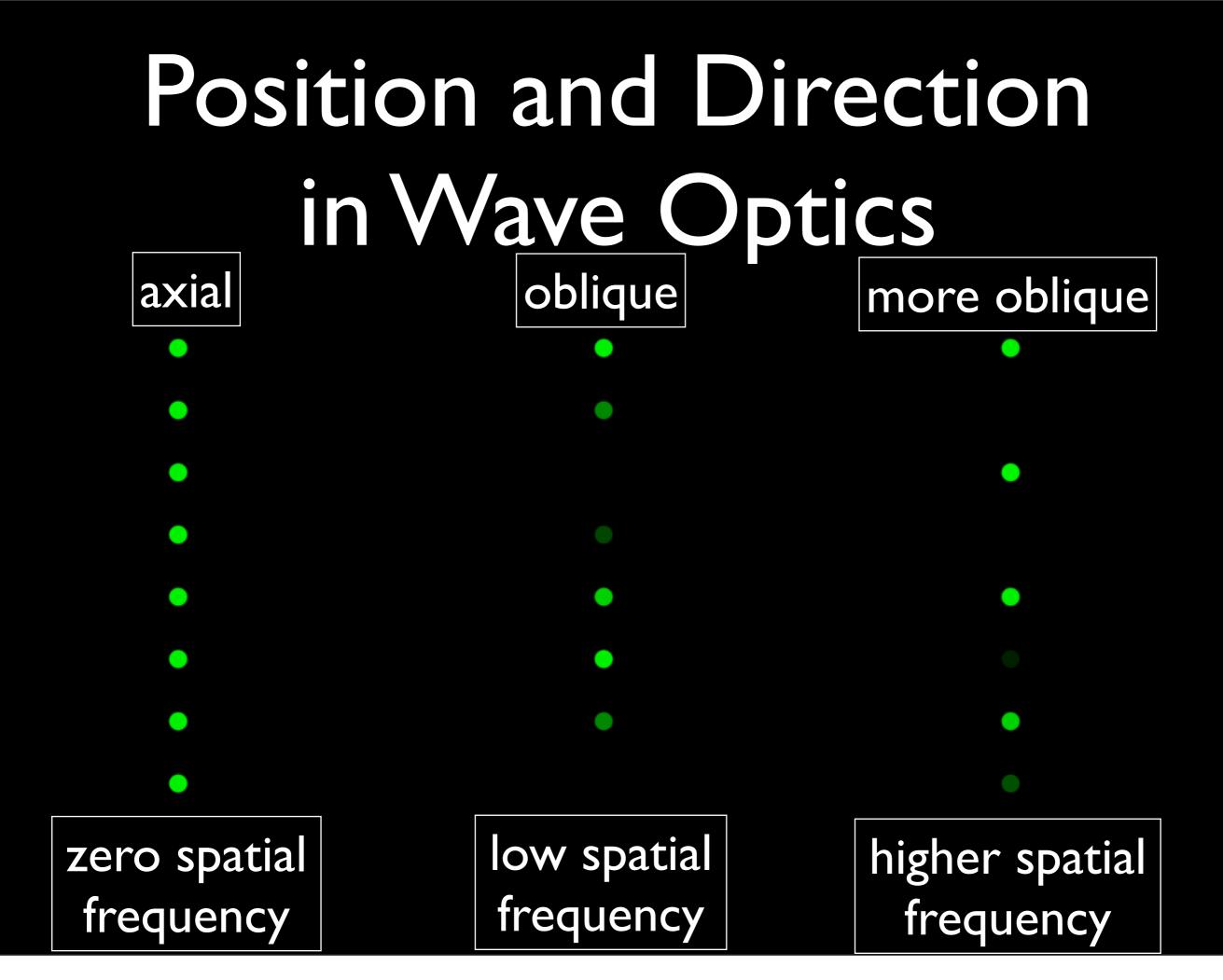


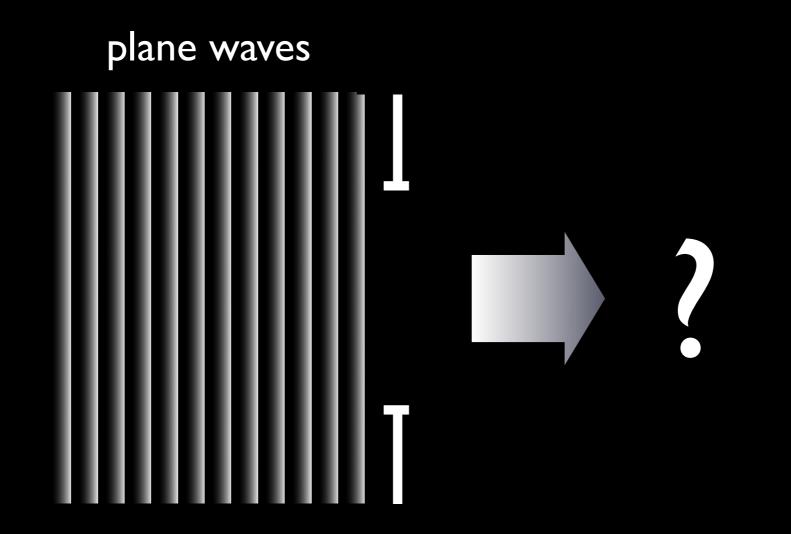
frequency

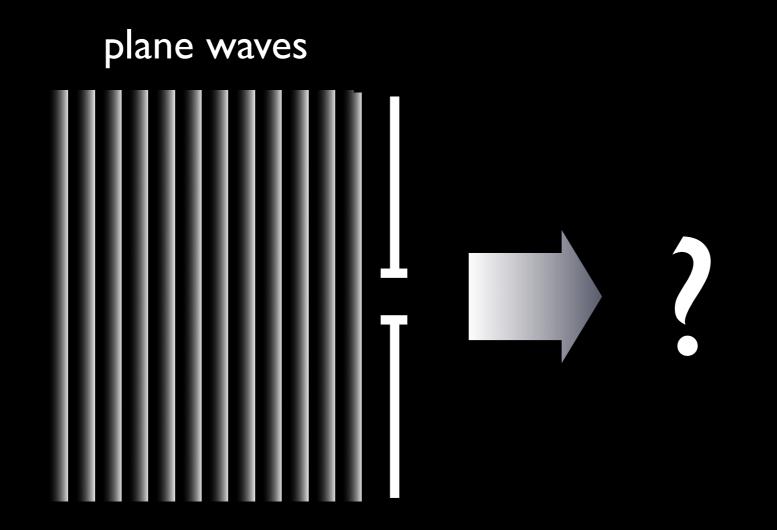






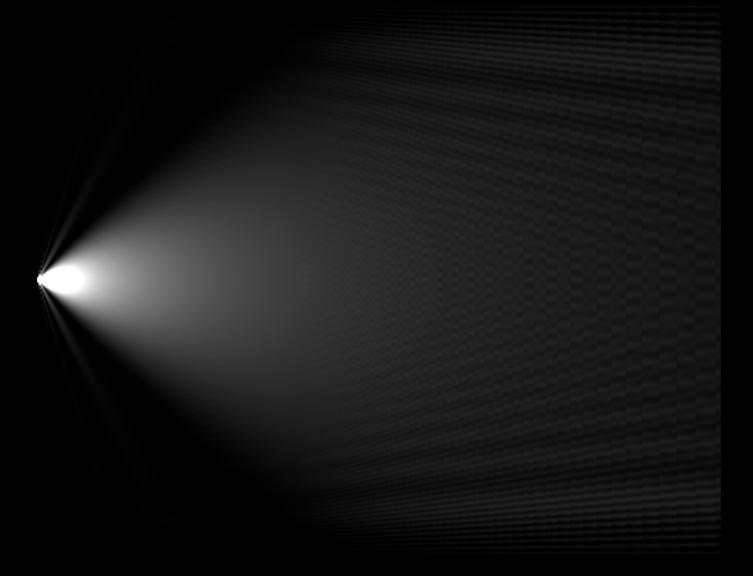




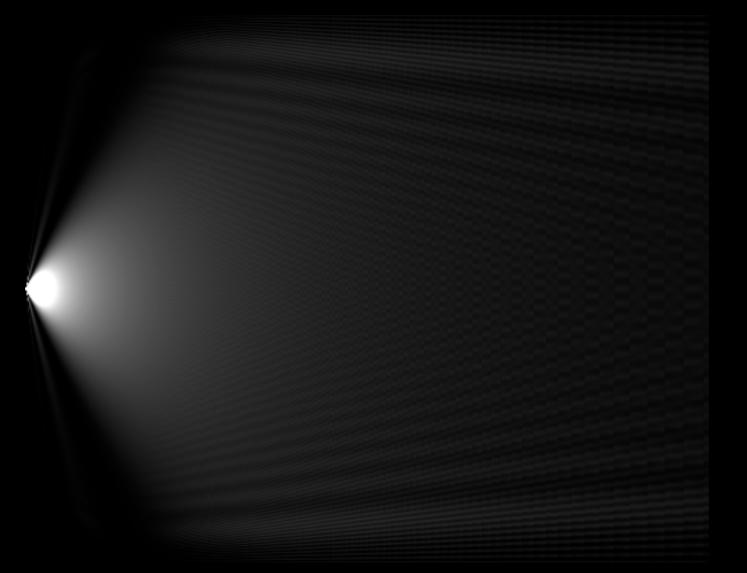


aperture = 128 wavelengths

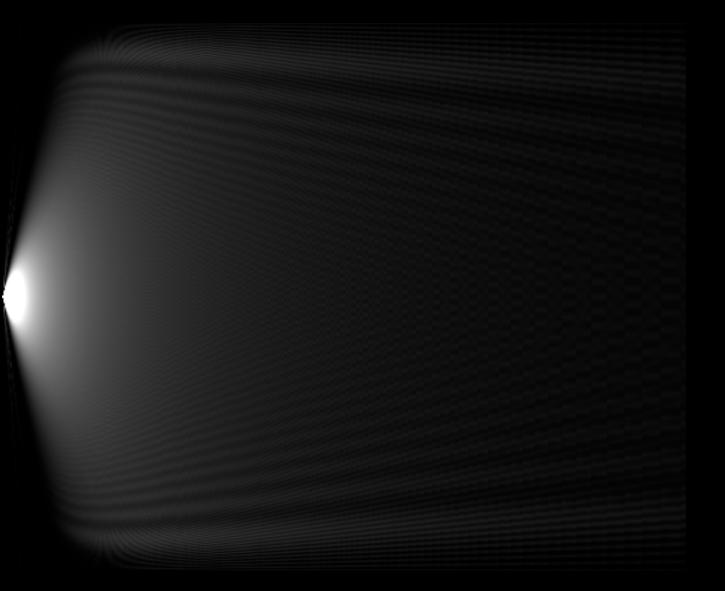
aperture = 64 wavelengths



aperture = 8 wavelengths



aperture = 4 wavelengths

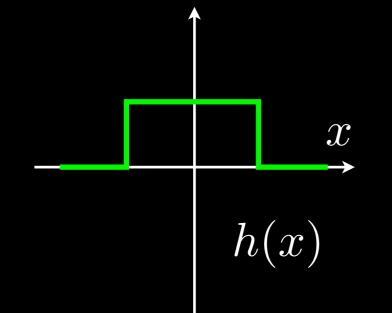


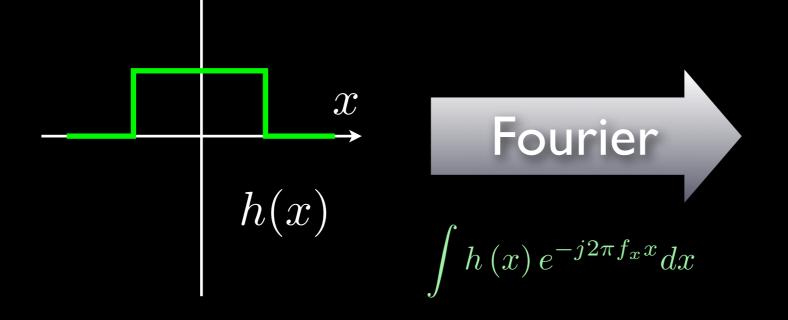
aperture = 2 wavelengths

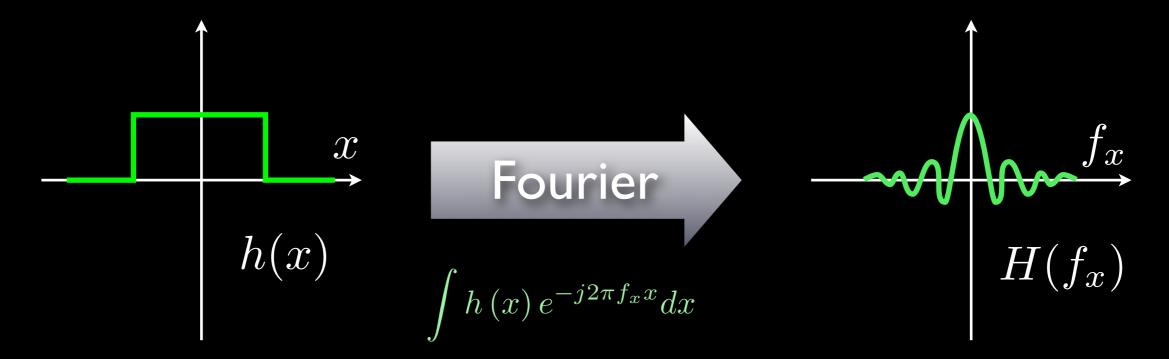
Recap

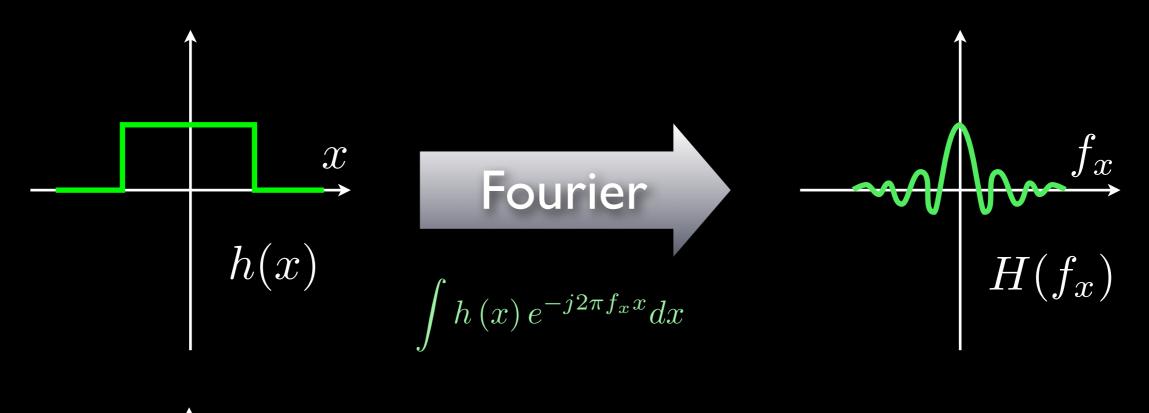
	ray optics	position	direction	
	wave optics	position	spatial frequency	

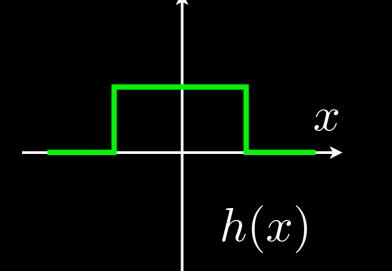
 to determine both position and spatial frequency, need to look at a window of finite (nonzero) width



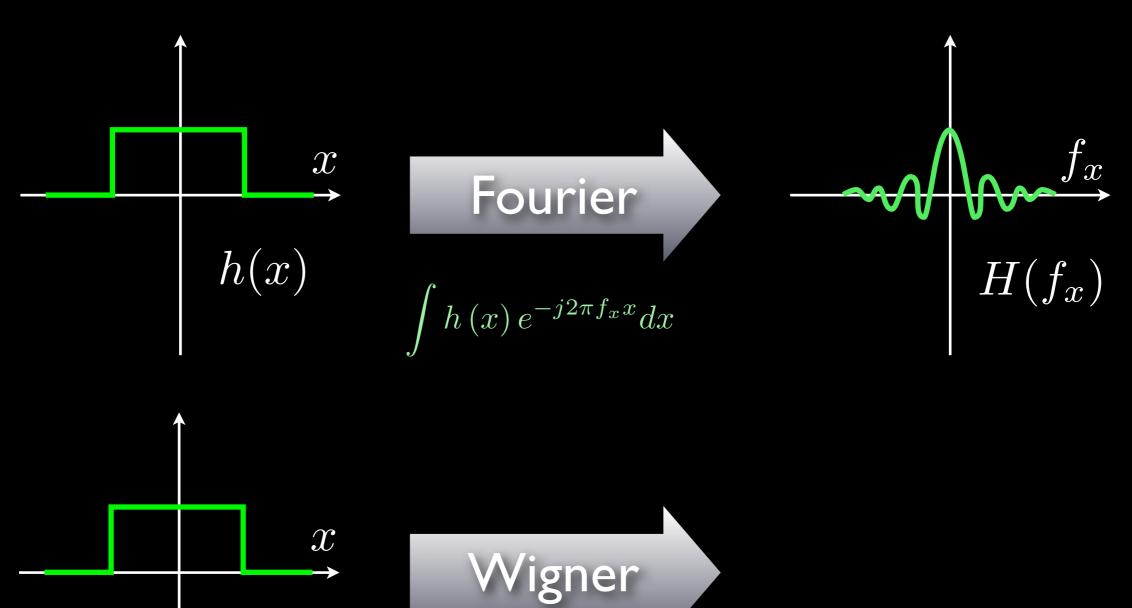






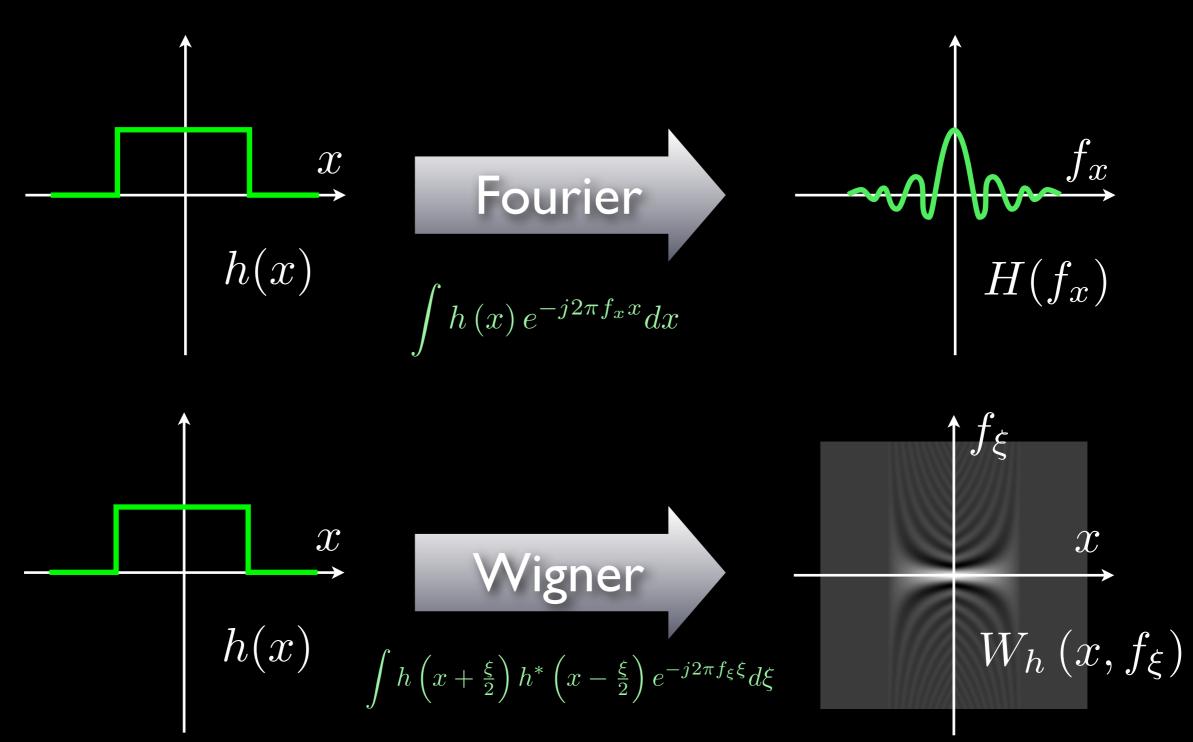


26



 $\int h\left(x+\frac{\xi}{2}\right)h^*\left(x-\frac{\xi}{2}\right)e^{-j2\pi f_{\xi}\xi}d\xi$

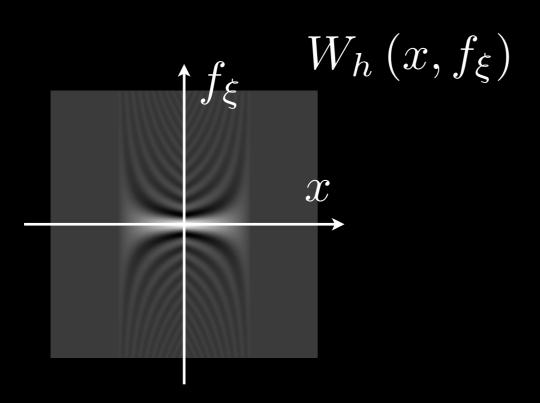
h(x)



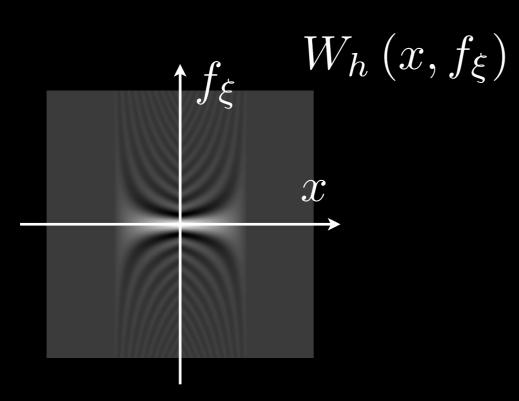
$$W_h(x, f_{\xi}) = \int h\left(x + \frac{\xi}{2}\right) h^*\left(x - \frac{\xi}{2}\right) e^{-j2\pi f_{\xi}\xi} d\xi$$

- input: one-dimensional function of position
- output: two-dimensional function of position and frequency
- (some) information about spectrum at each position

- projection along frequency yields power
- projection along position yields spectral power

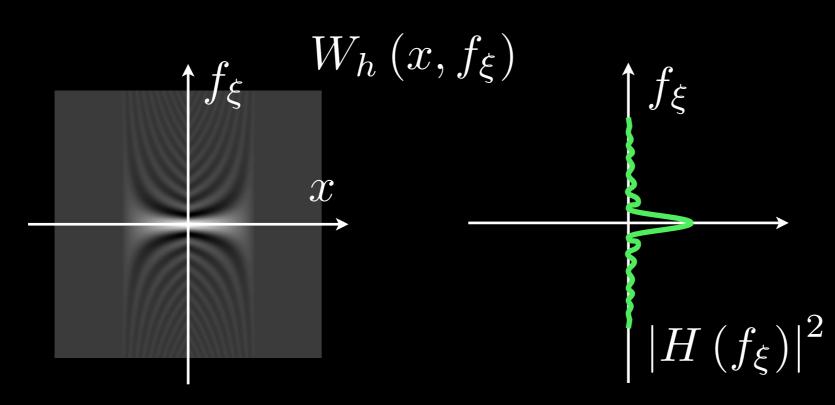


- projection along frequency yields power
- projection along position yields spectral power



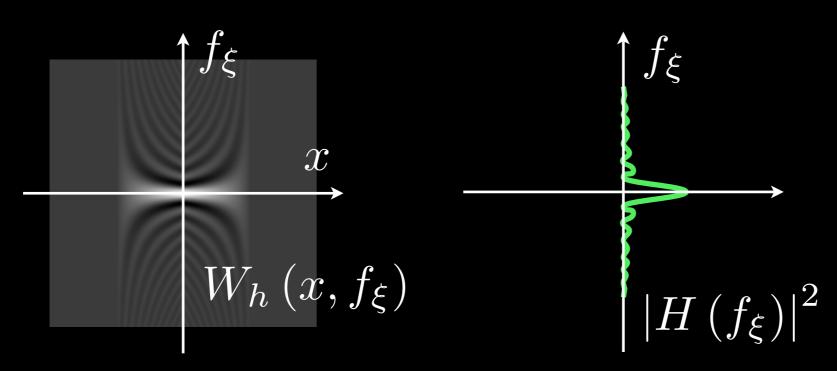
 $|h(x)|^2$

- projection along frequency yields power
- projection along position yields spectral power



 $|h(x)|^2$

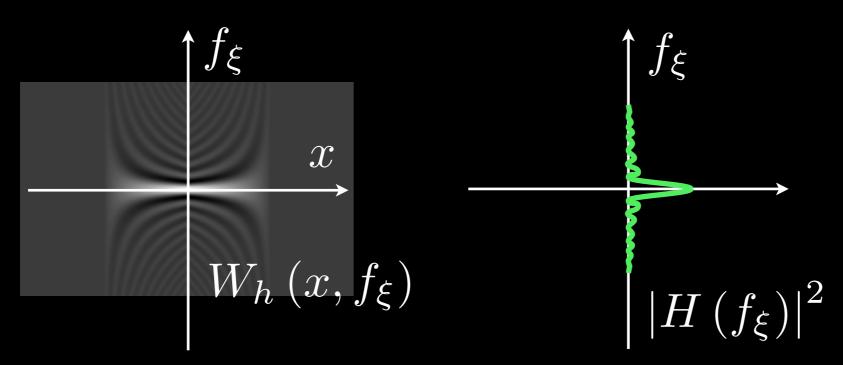
- tradeoff between width and height (fixed "area" or space-bandwidth product)
- uncertainty principle



 $|h(x)|^{2}$

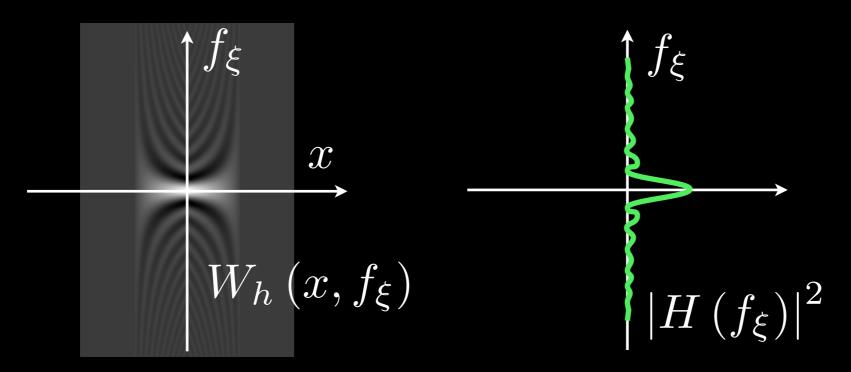
 tradeoff between width and height (fixed "area" or space-bandwidth product)

uncertainty principle



 $|h(x)|^{2}$

- tradeoff between width and height (fixed "area" or space-bandwidth product)
- uncertainty principle



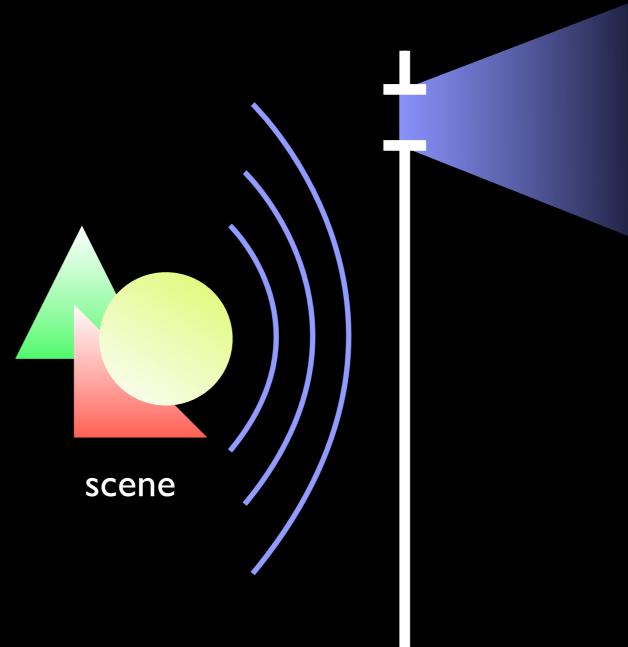
 $|h(x)|^{2}$

$$W_h(x, f_{\xi}) = \int h\left(x + \frac{\xi}{2}\right) h^*\left(x - \frac{\xi}{2}\right) e^{-j2\pi f_{\xi}\xi} d\xi$$

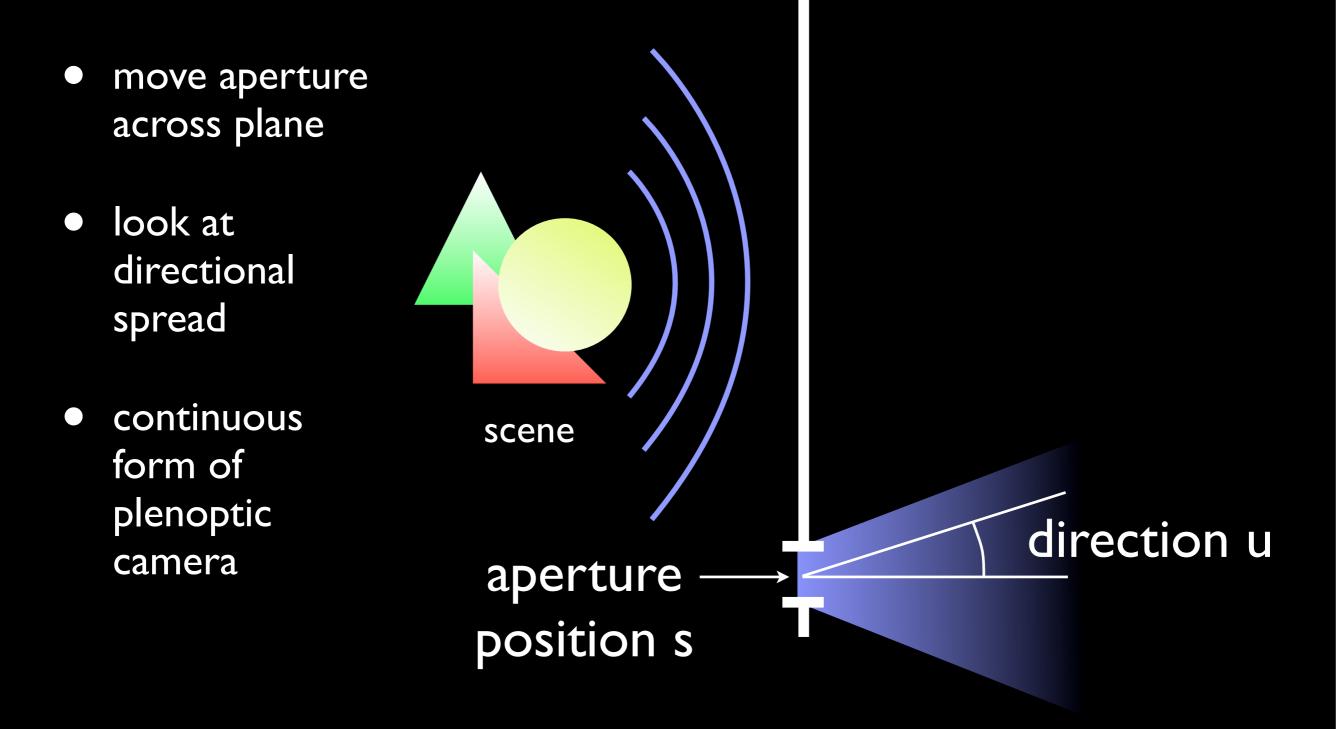
- information about both position and frequency
- fixed space-bandwidth product

- move aperture across plane
- look at directional spread
- continuous form of plenoptic camera

- move aperture across plane
- look at directional spread
- continuous form of plenoptic camera



move aperture across plane look at directional spread continuous scene form of plenoptic camera



Space of LF representations Time-frequency representations Phase space representations Quasi light field

Other LF representations

Other LF representations

Observable LF

Augmented LF WDF

Traditional light field

Rihaczek Distribution Function

incoherent

coherent

Property of the Representation

	Constant along rays	Non-negativity	Coherence	Wavelength	Interference Cross term
Traditional LF	always constant	always positive	only incoherent	zero	no
Observable LF	nearly constant	always positive	any coherence state	any	yes
Augmented LF	only in the paraxial region	positive and hegative	any	any	yes
WDF	only in the paraxial region	positive and negative	any	any	yes
Rihaczek DF	no; linear drift	complex	any	any	reduced

Benefits & Limitations of the Representation

	Ability to propagate	Modeling wave optics	Simplicity of computation	Adaptability to current pipe line	Near Field	Far Field
Traditional LF	x-shear	no	very simple	high	no	yes
Observable LF	not x-shear	yes	modest	low	yes	yes
Augmented LF	x-shear	yes	modest	high	no	yes
WDF	x-shear	yes	modest	low	yes	yes
Rihaczek DF	x-shear	yes	better than WDF, not as simple as LF	low	no	yes

$$l_{obs}^{(T)}(s,u) = \left| \int U(x)T(x-s)e^{-j2\pi\frac{u}{\lambda}x}dx \right|^2$$

$$l_{obs}^{(T)}(s,u) = \left| \int U(x)T(x-s)e^{-j2\pi \frac{u}{\lambda}x}dx \right|^{2}$$

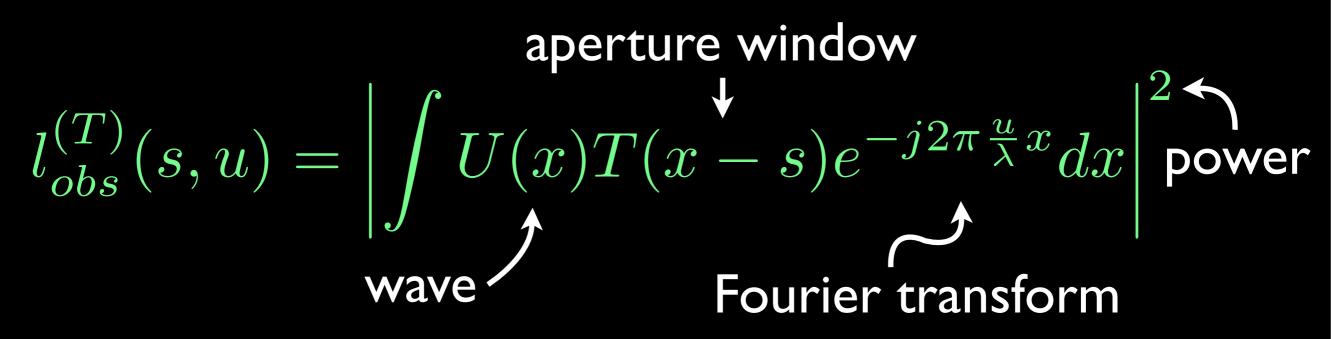
Fourier transform

$$l_{obs}^{(T)}(s,u) = \left| \int U(x)T(x-s)e^{-j2\pi \frac{u}{\lambda}x}dx \right|^{2}$$
wave Fourier transform

aperture window

$$l_{obs}^{(T)}(s,u) = \left| \int U(x)T(x - s)e^{-j2\pi \frac{u}{\lambda}x}dx \right|^{2}$$
wave Fourier transform

5



$$l_{obs}^{(T)}(s,u) = \left| \int U(x)T(x-s)e^{-j2\pi\frac{u}{\lambda}x}dx \right|^2$$

 $l_{obs}^{(T)}(s,u) = W_U\left(s,\frac{u}{\lambda}\right) \otimes W_T\left(-s,\frac{u}{\lambda}\right)$

$$l_{obs}^{(T)}(s,u) = \left| \int U(x)T(x-s)e^{-j2\pi\frac{u}{\lambda}x}dx \right|^2$$

$$\begin{split} l_{obs}^{(T)}(s,u) &= W_U\left(s,\frac{u}{\lambda}\right) \otimes W_T\left(-s,\frac{u}{\lambda}\right) \\ \swarrow \\ \text{Wigner distribution} \\ \text{of wave function} \end{split}$$

$$l_{obs}^{(T)}(s,u) = \left| \int U(x)T(x-s)e^{-j2\pi\frac{u}{\lambda}x}dx \right|^2$$

 $l_{obs}^{(T)}(s, u) = W_U\left(s, \frac{u}{\lambda}\right) \otimes W_T\left(-s, \frac{u}{\lambda}\right)$ $M_U\left(s, \frac{u}{\lambda}\right)$ $M_U\left(s, \frac{u}{\lambda}\right) \otimes W_T\left(-s, \frac{u}{\lambda}\right)$ $M_U\left(s, \frac{u}{\lambda}\right)$

$$l_{obs}^{(T)}(s,u) = \left| \int U(x)T(x-s)e^{-j2\pi\frac{u}{\lambda}x}dx \right|^2$$

blur trades off resolution in position with direction

$$l_{obs}^{(T)}(s, u) = W_U(s, \frac{u}{\lambda}) \otimes W_T(-s, \frac{u}{\lambda})$$

$$\swarrow$$
Wigner distribution
of wave function
Wigner distribution
of aperture window

at zero wavelength limit (regime of ray optics)

 $l_{obs}^{(T)}(s, u) = W_U \left(s, \frac{u}{\lambda} \right) \otimes W_T \left(-s, \frac{u}{\lambda} \right)$ Wigner distribution of wave function Wigner distribution of aperture window

at zero wavelength limit (regime of ray optics)

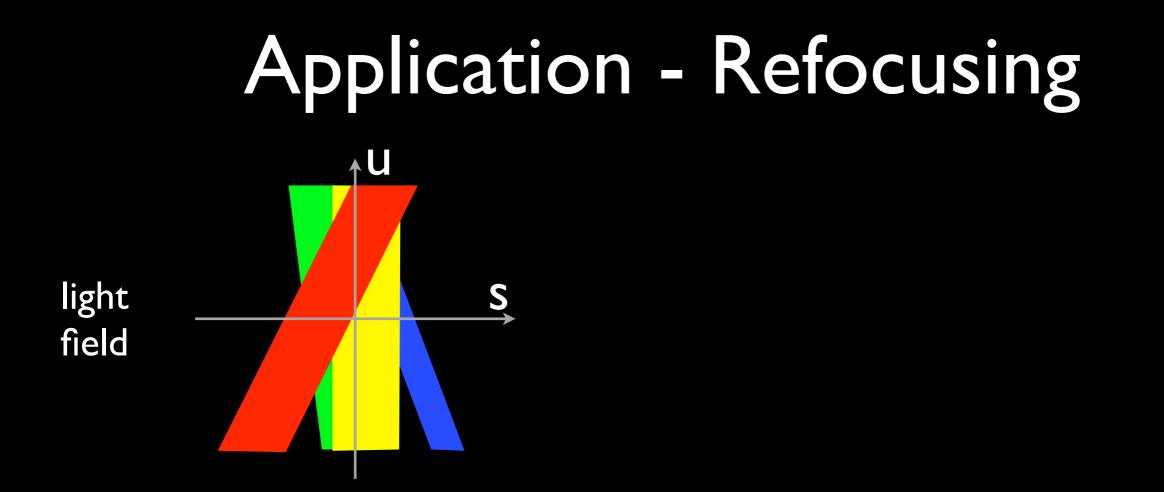
 $l_{obs}^{(T)}(s, u) = W_U\left(s, \frac{u}{\lambda}\right) \otimes \delta(-s, u)$ \swarrow Wigner distribution
of wave function

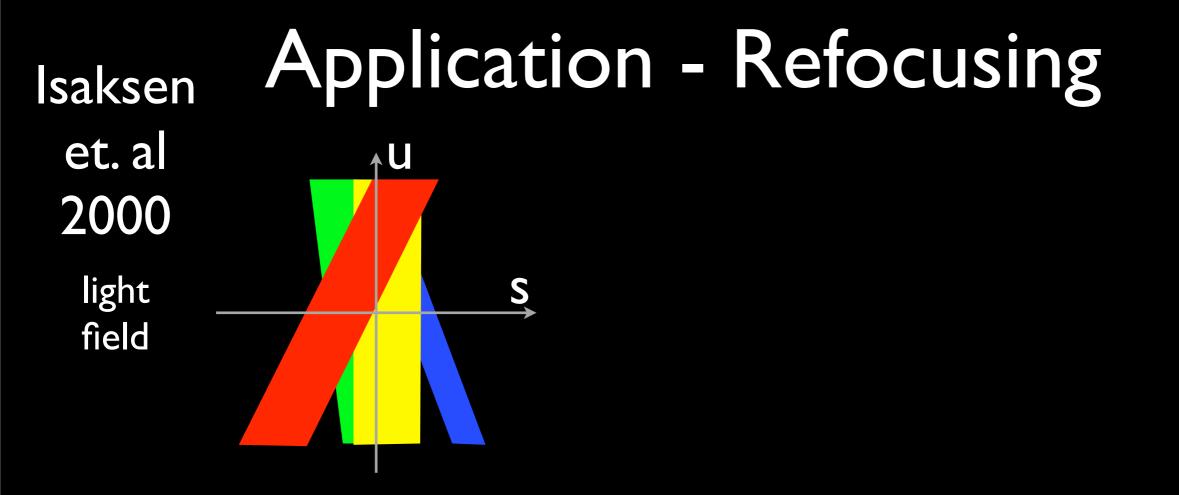
at zero wavelength limit (regime of ray optics)

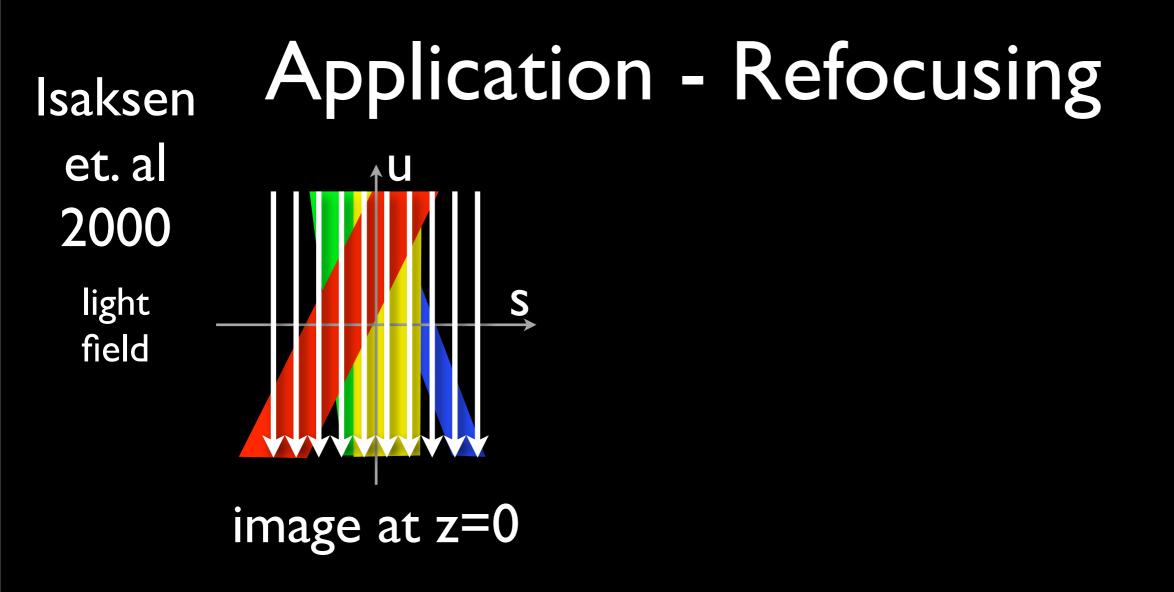
$$l_{obs}^{(T)}(s,u) = W_U\left(s,\frac{u}{\lambda}\right)$$

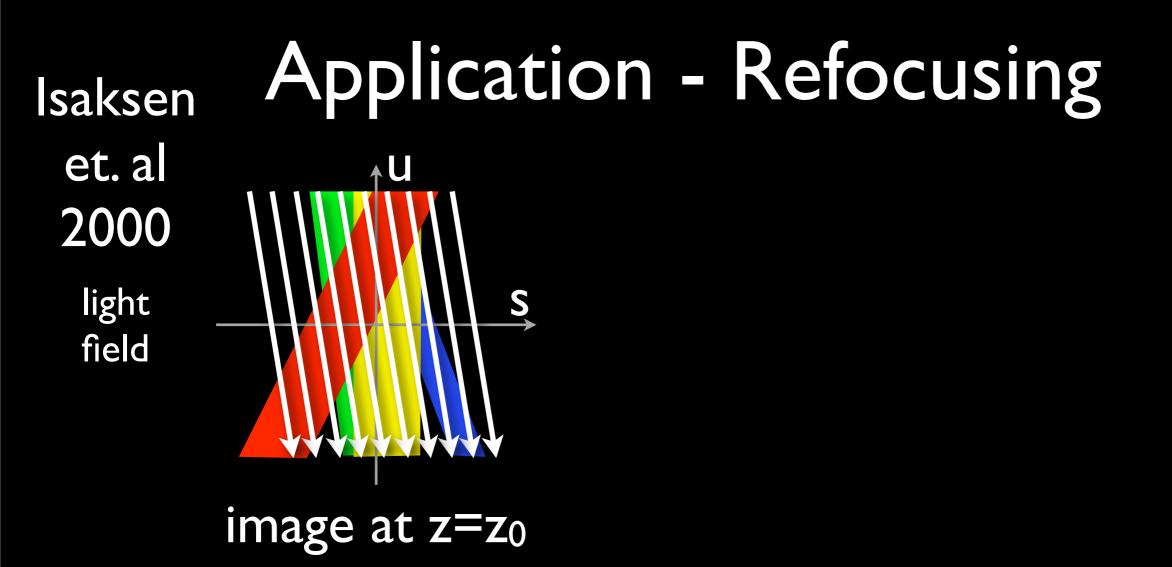
observable light field and Wigner equivalent!

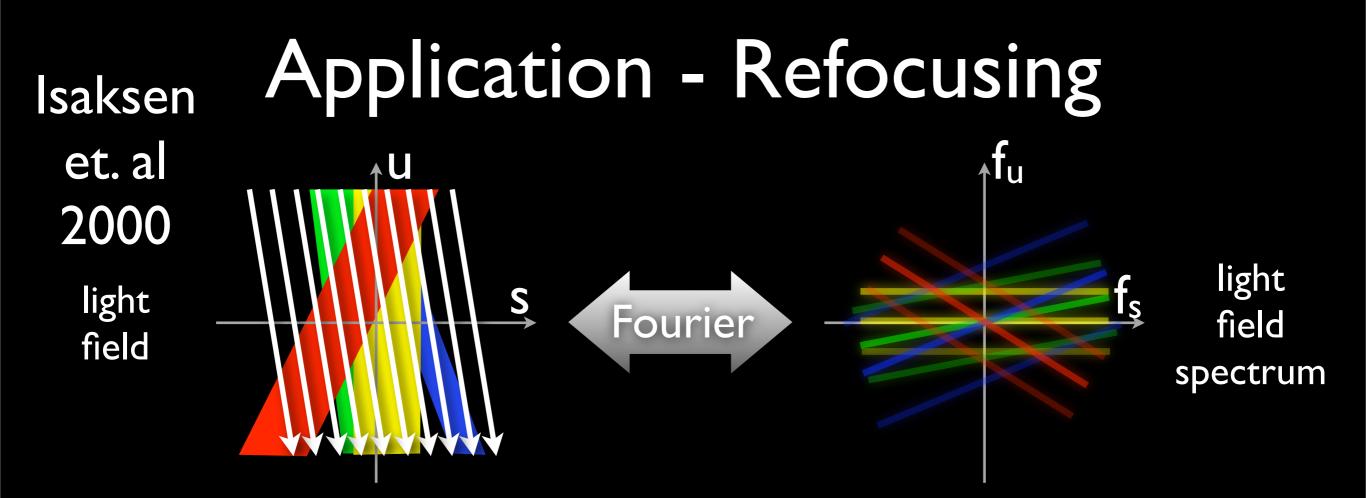
- observable light field is a blurred Wigner distribution with a modified coordinate system
- blur trades off resolution in position with direction
- Wigner distribution and observable light field equivalent at zero wavelength limit

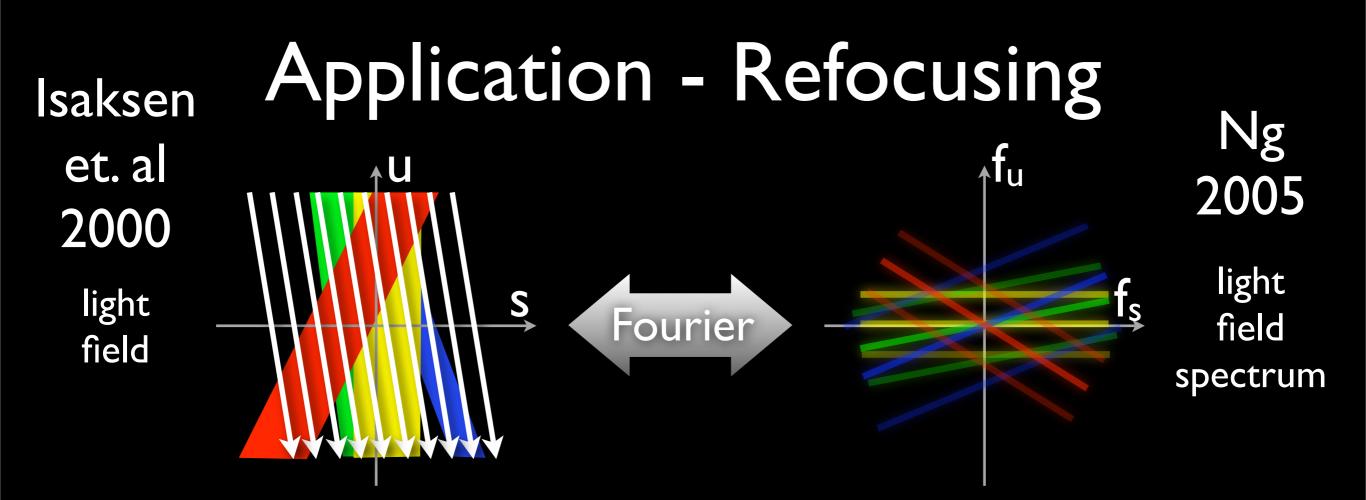


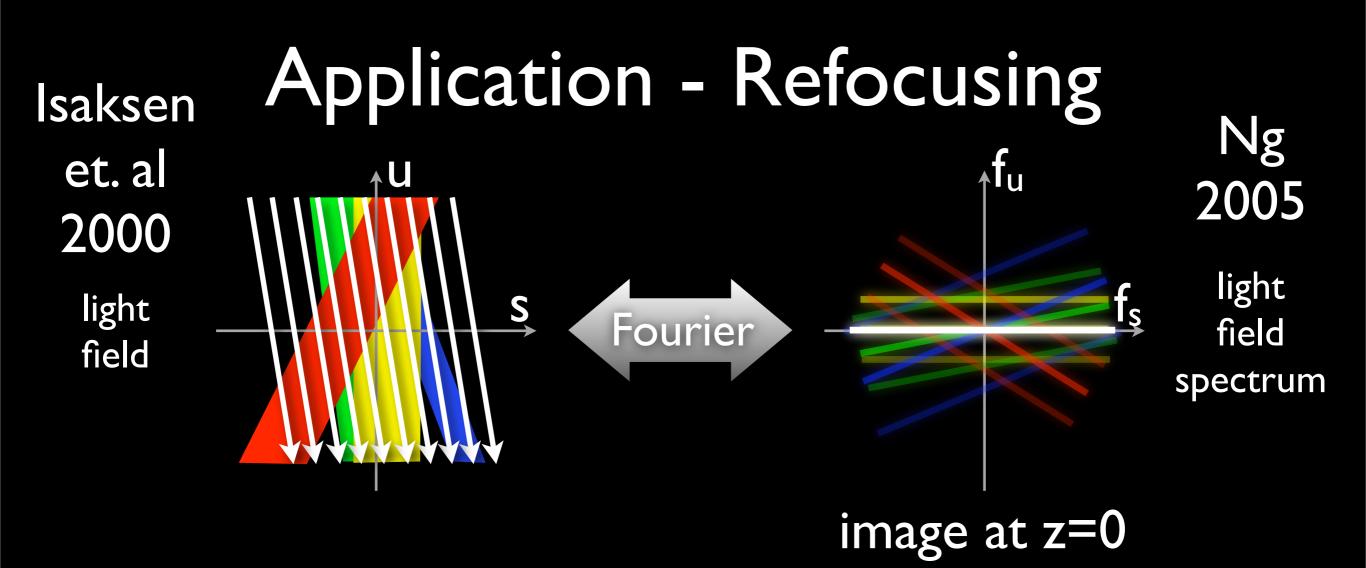


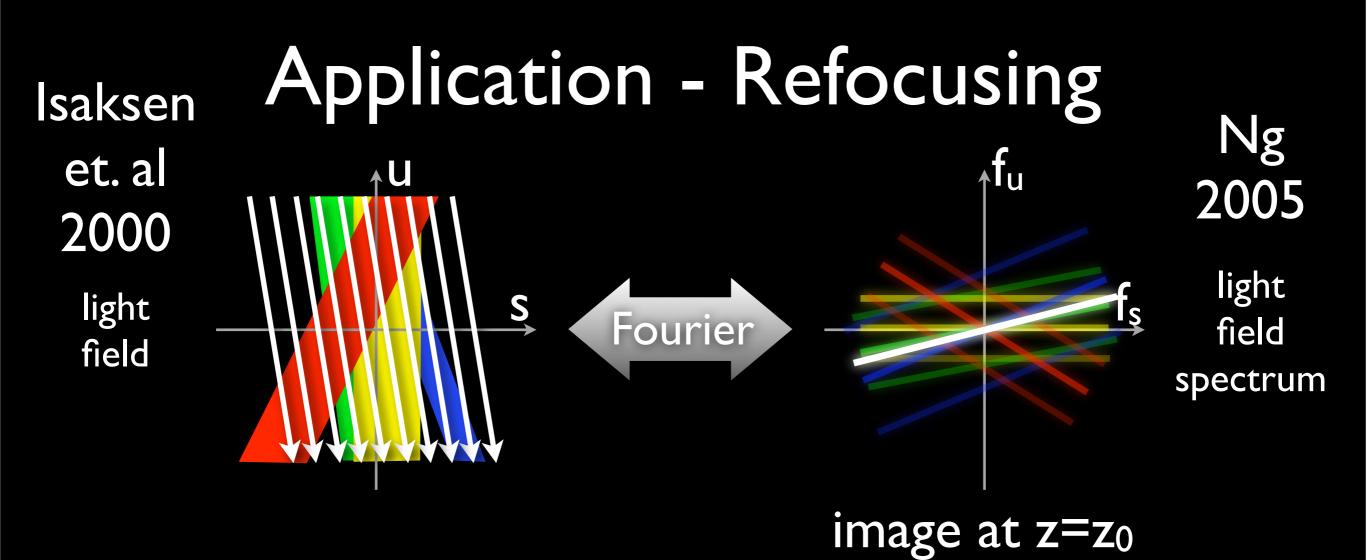


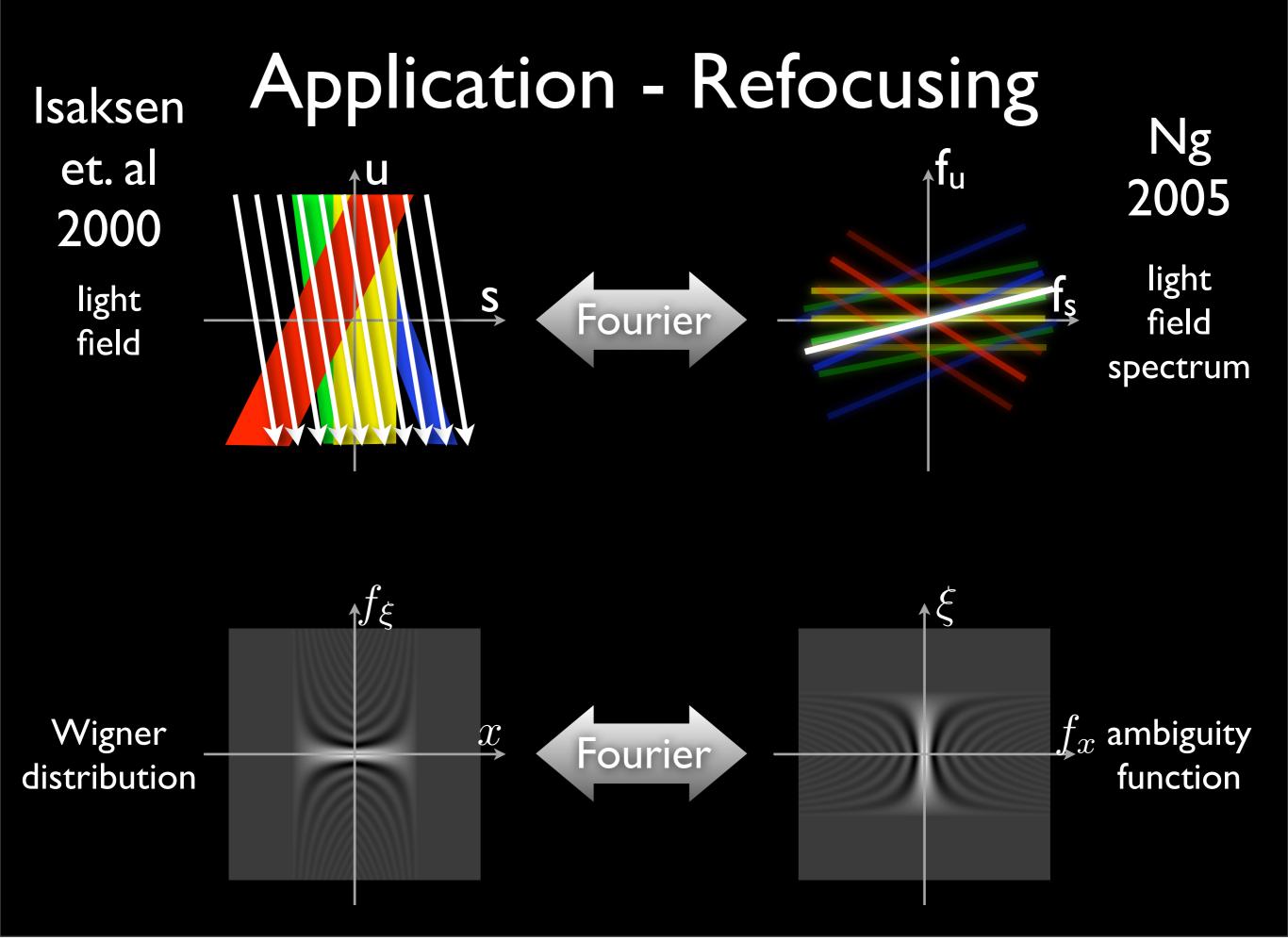


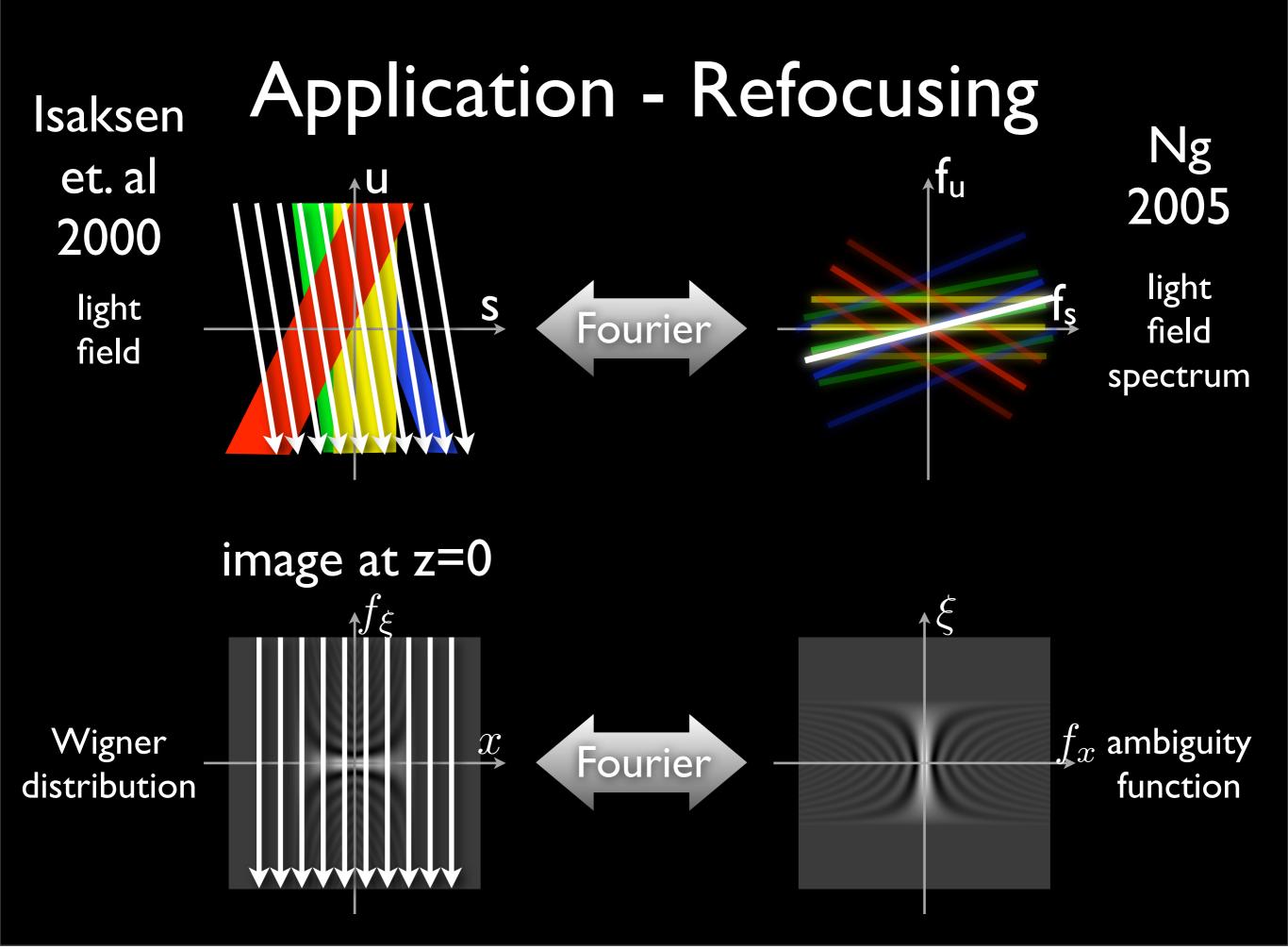


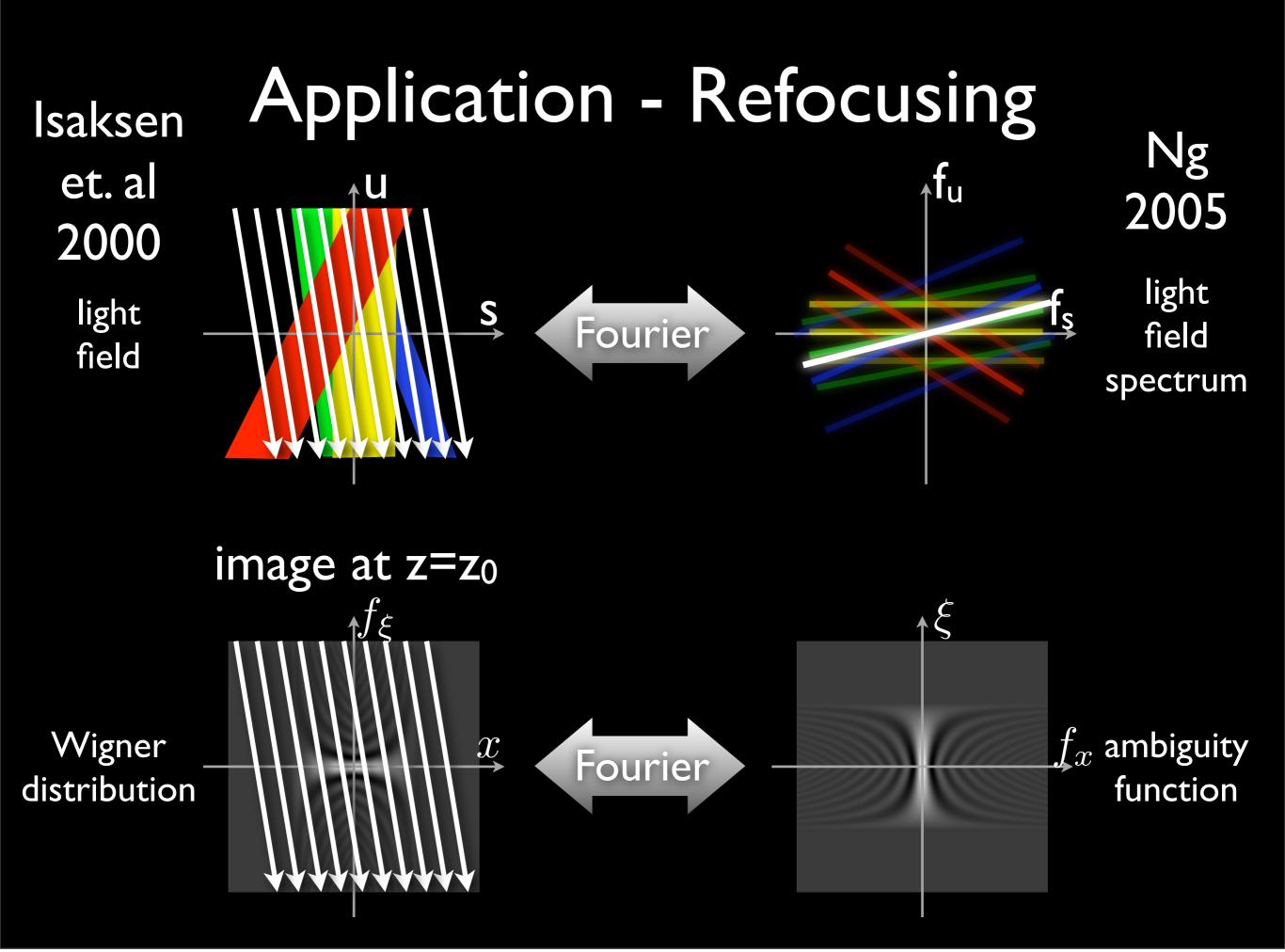


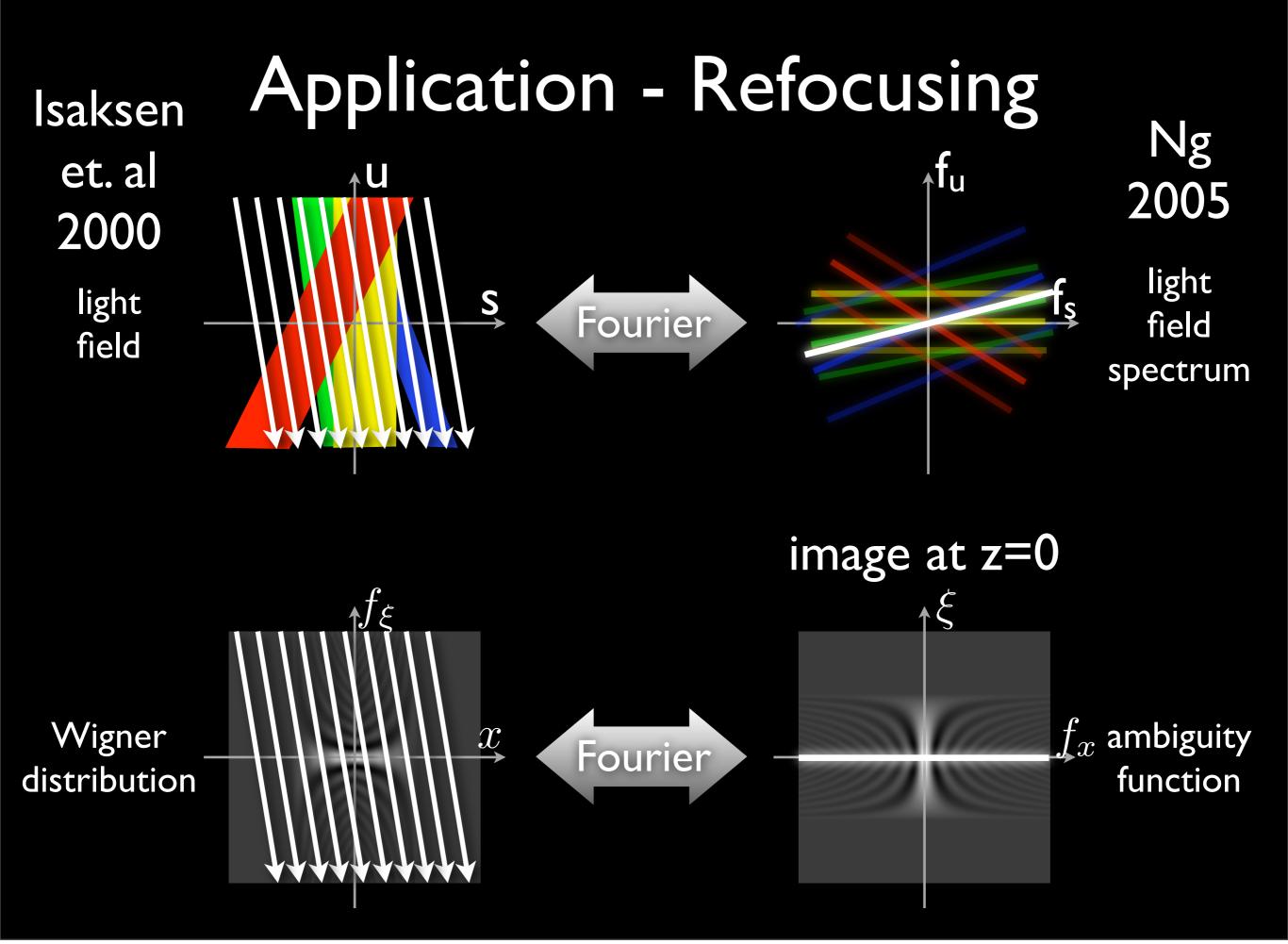


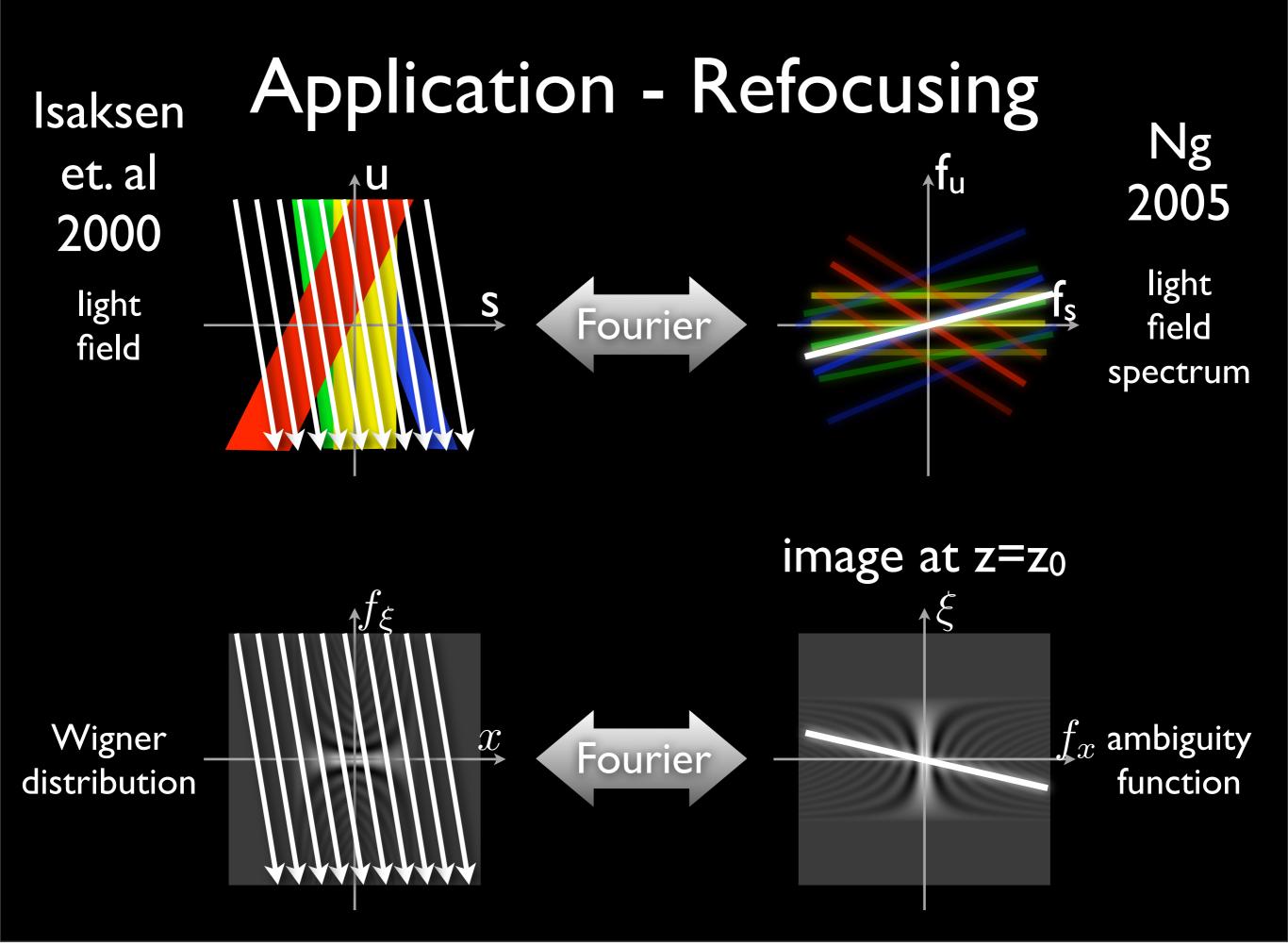


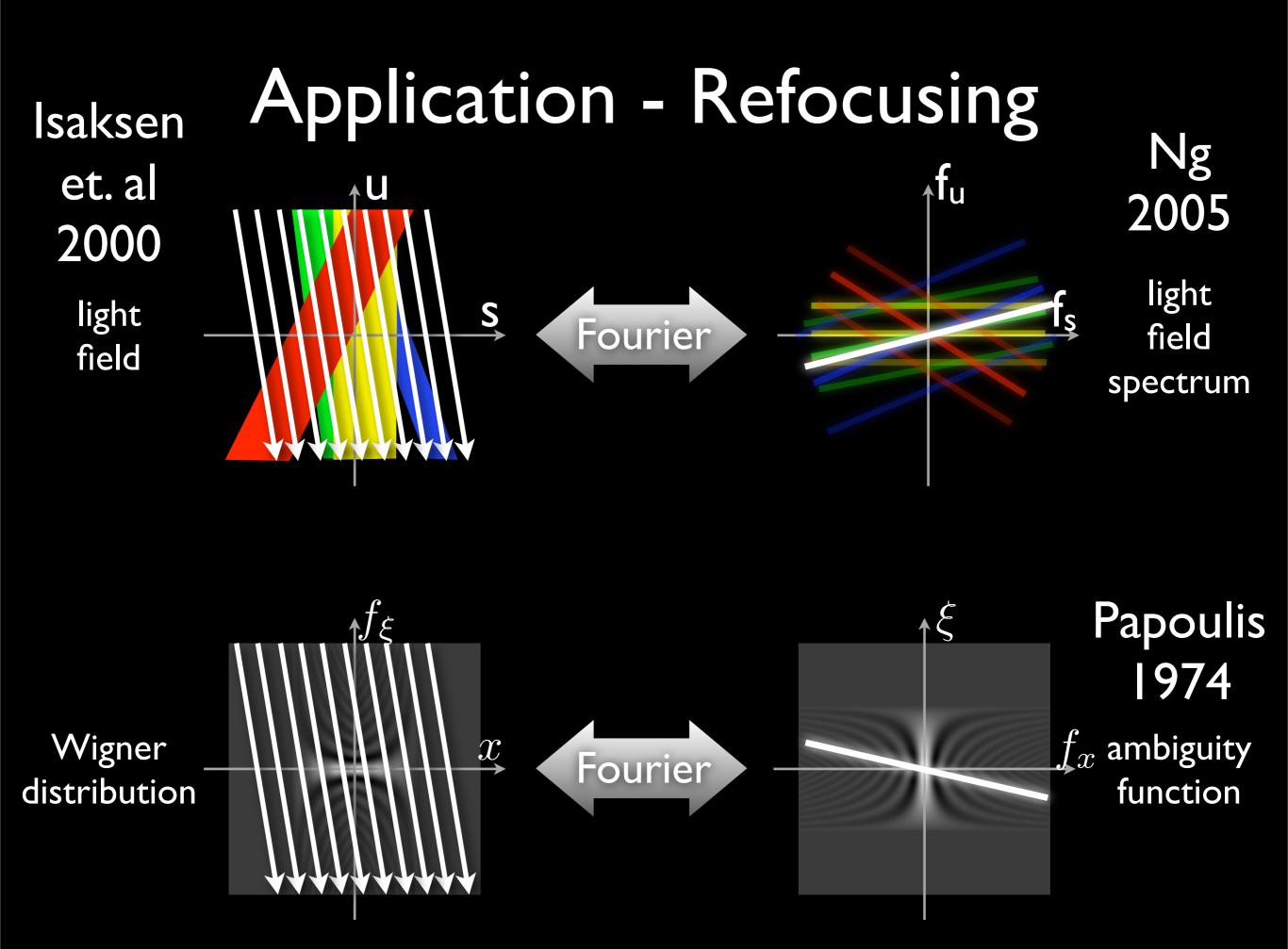




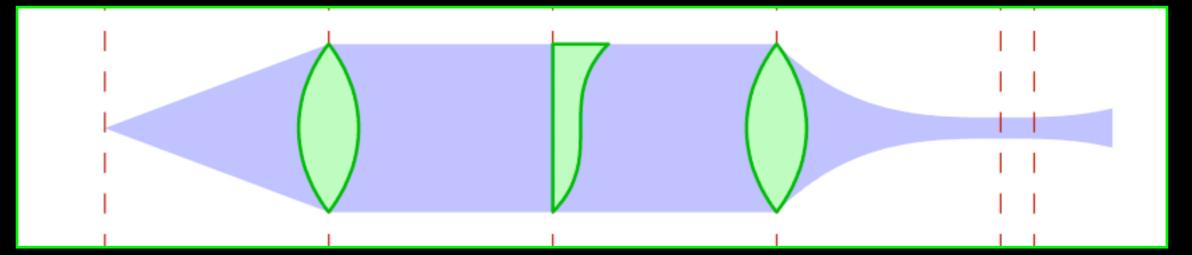




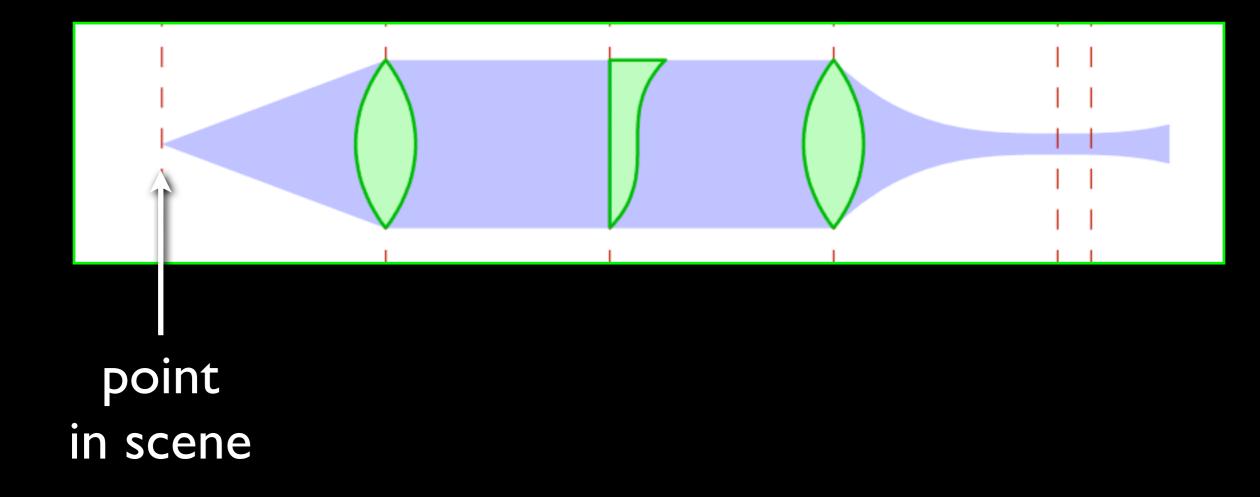




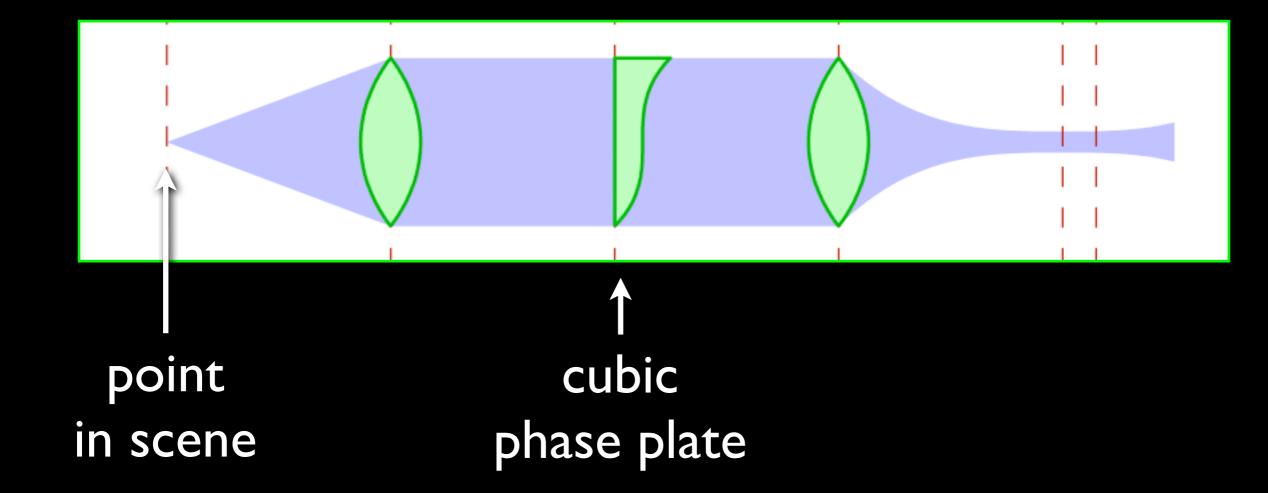
Dowski and Cathey 1995



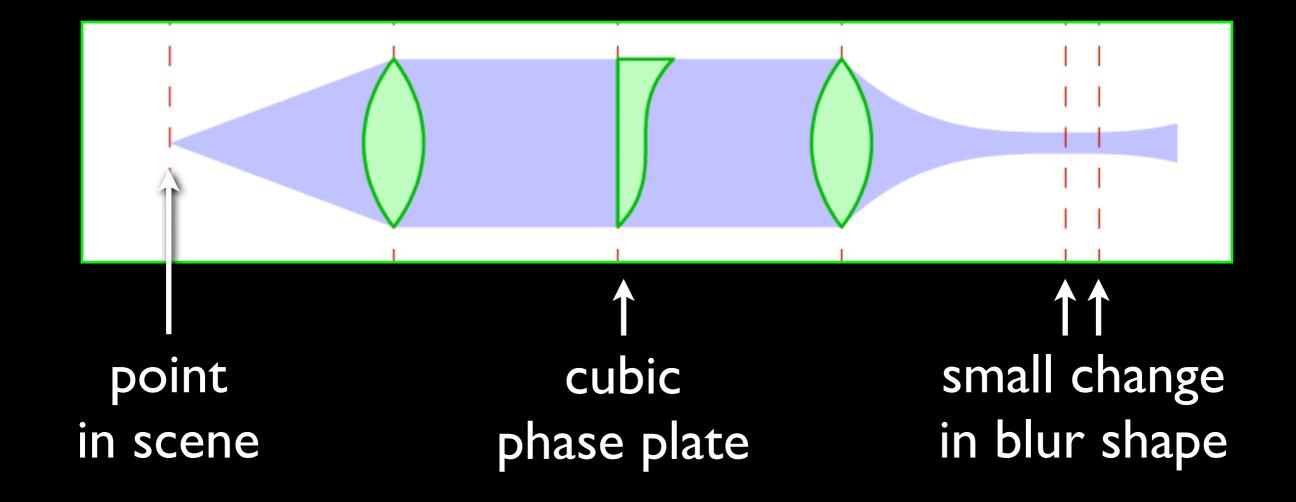
Dowski and Cathey 1995

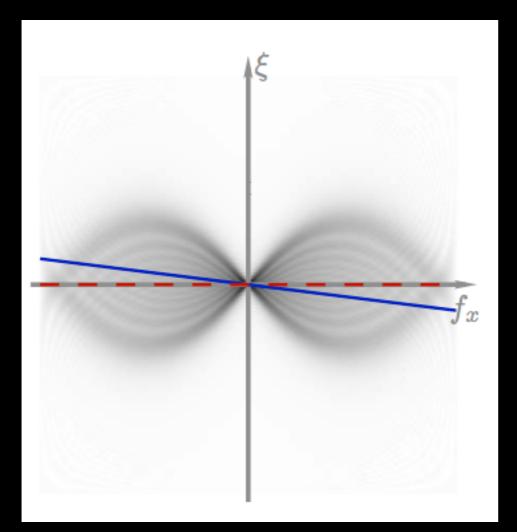


Dowski and Cathey 1995



Dowski and Cathey 1995

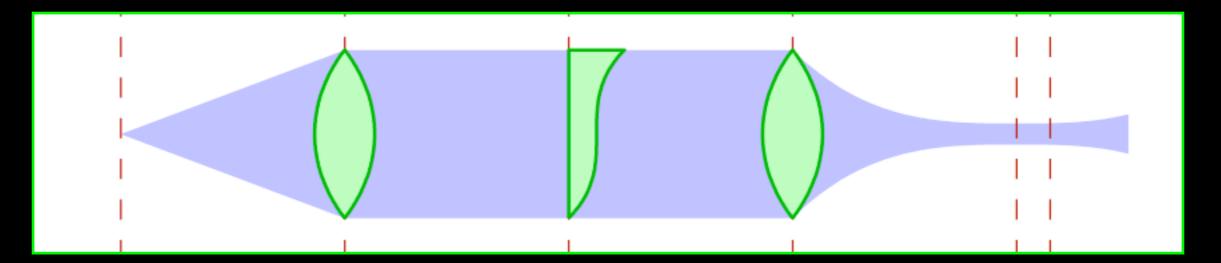


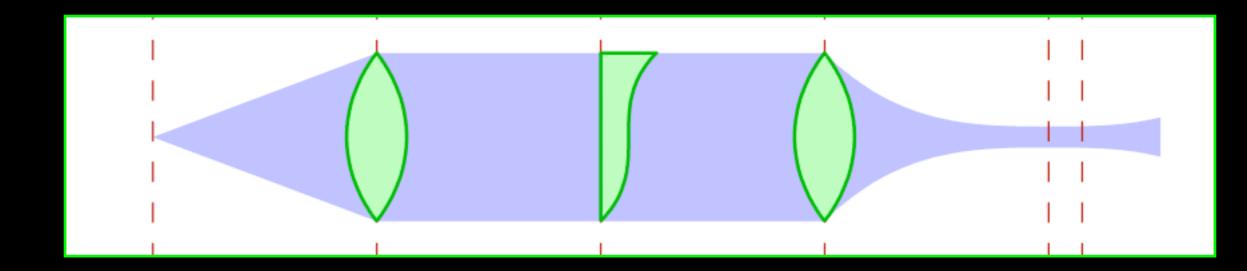


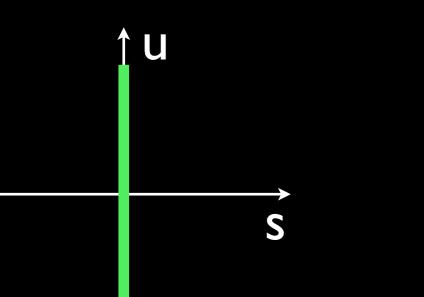
 $\int f_x$

slices corresponding to various depths

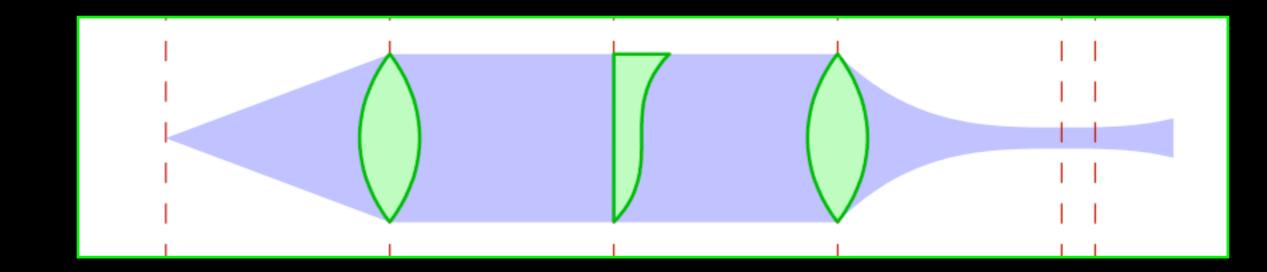
ambiguity function

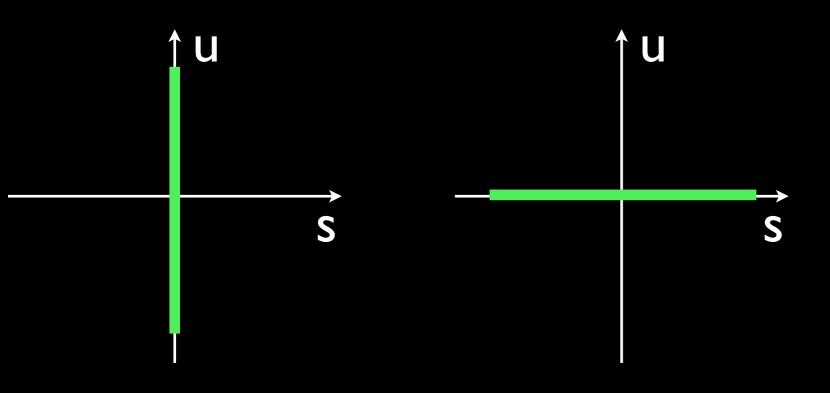




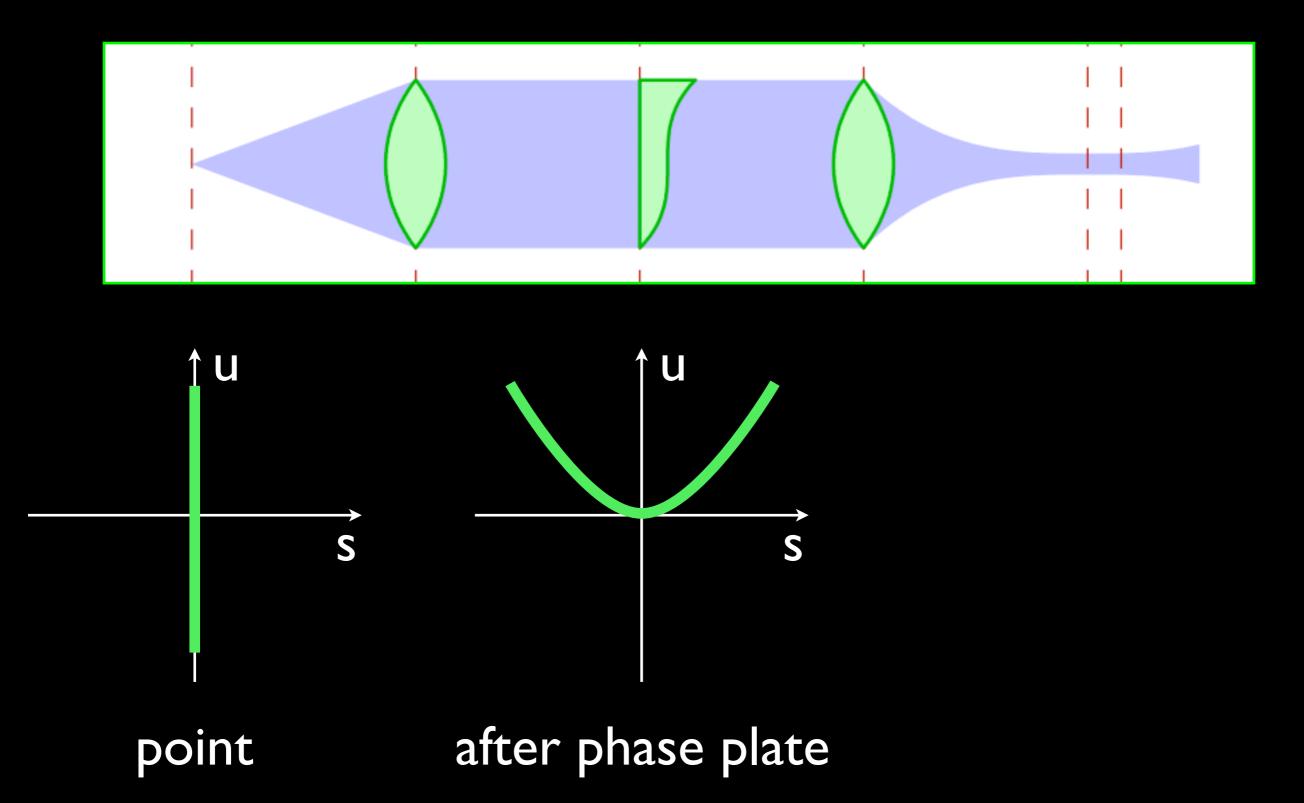


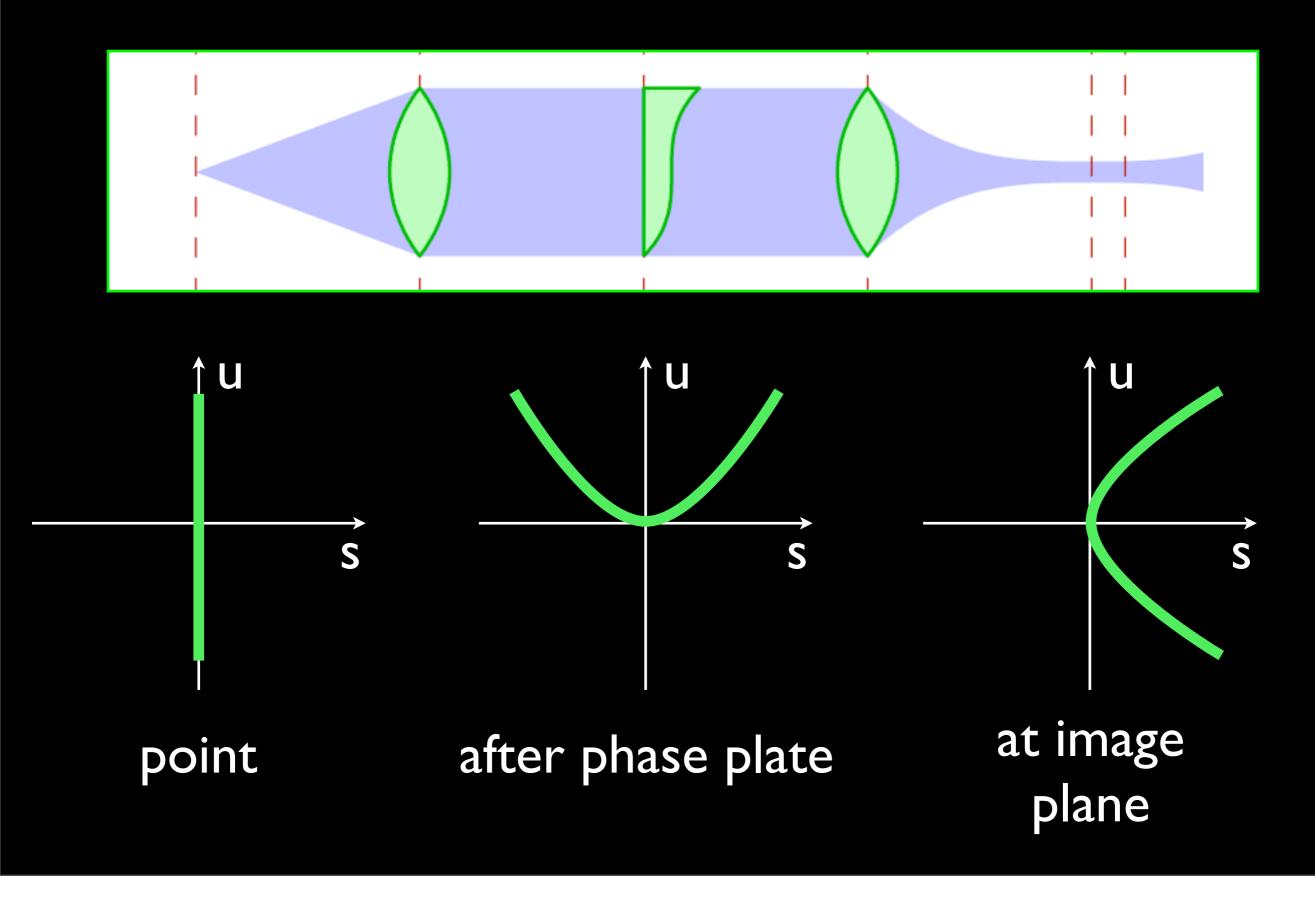
point

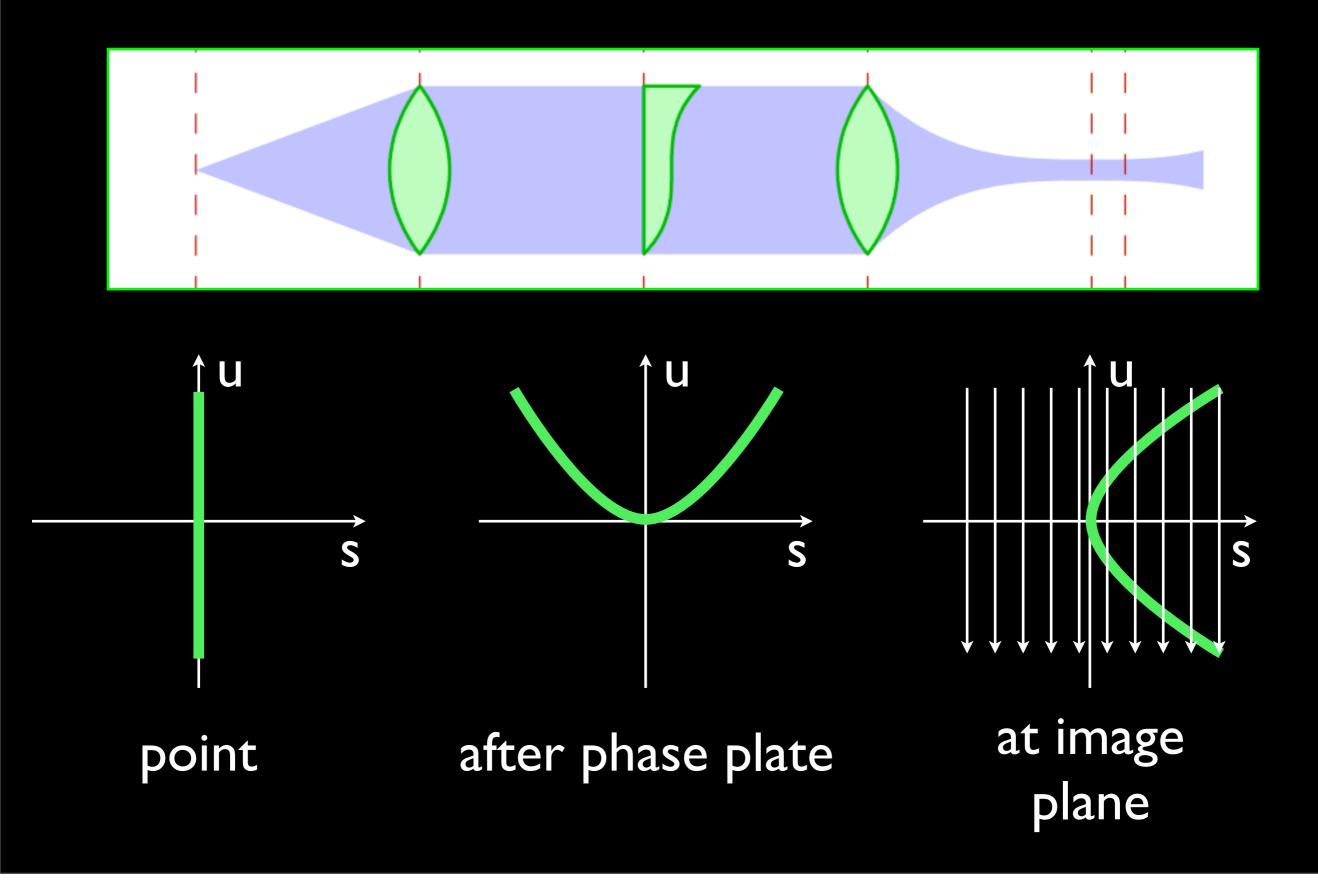




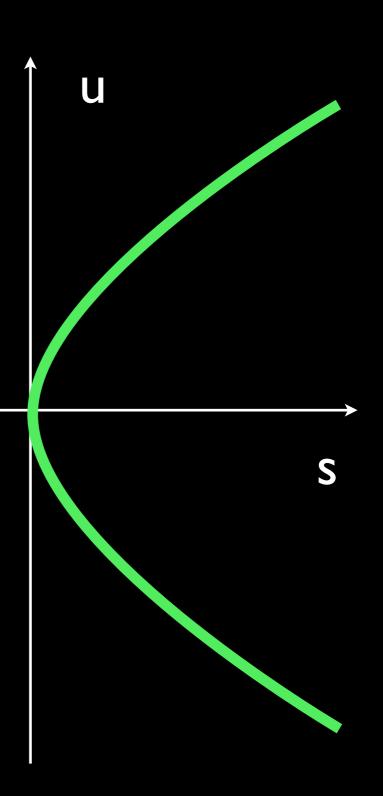
point before phase plate



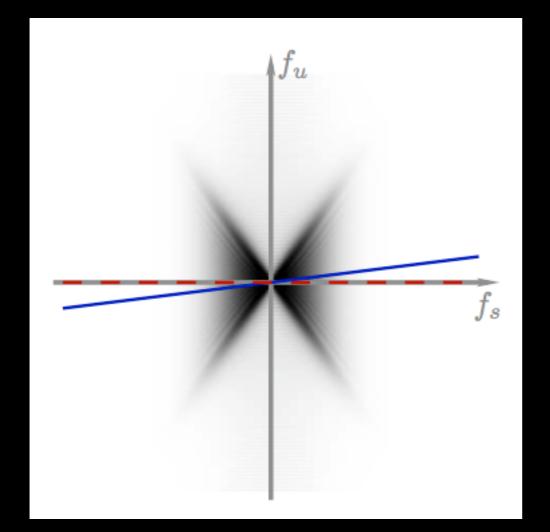




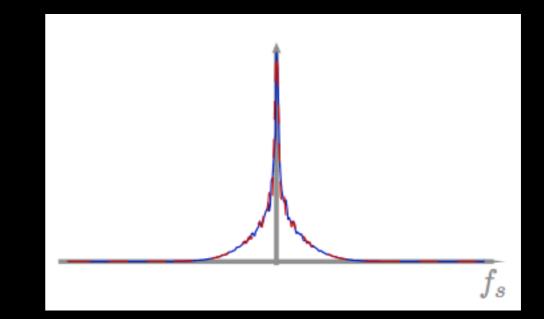
- refocusing in ray space is shearing
- shearing of a parabola results in translation
- blur shape invariant to refocusing



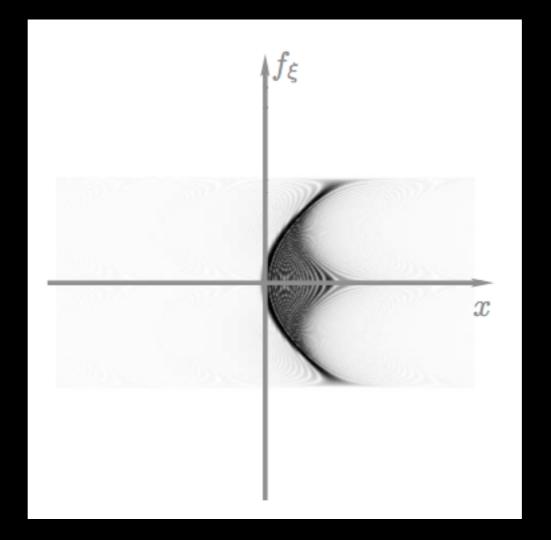
Application - Wavefront Coding U refocusing in ray space is shearing shearing of a parabola results in translation S blur shape invariant to refocusing



Fourier transform of light field



slices corresponding to various depths



Wigner distribution for cubic phase plate system

Conclusions

- light field's position and direction = wave optics's position and frequency
- observable light field = blurred Wigner distribution (equal at zero wavelength limit)
- analysis using light fields and Wigner distribution interchangeable

Further Reading

- http://scripts.mit.edu/~raskar/lightfields/
 Wiki for this course
- Z. Zhang, M. Levoy, "Wigner Distributions and How They Relate to the Light Field", ICCP 2009

Future Work

- analyze various light field capture and generation systems using wave optics
- rendering wave optics phenomena
- adapt more ideas from optics community and vice versa!

Acknowledgements

- Anat Levin, Fredo Durand and Bill Freeman
- Stanford Graduate Fellowship from Texas Instruments and NSF Grant CCF-0540872

Light Fields in Ray and Wave Optics

	Introduction to Light Fields:	Ramesh Raskar
	Wigner Distribution Function to explain Light Fields:	Zhengyun Zhang
	Augmenting LF to explain Wigner Distribution Function:	Se Baek Oh
	Q&A	
Break		
	Light Fields with Coherent Light:	Anthony Accardi
	New Opportunities and Applications:	Raskar and Oh
	Q&A:	All