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Abstract: Geometrical–optical arguments have traditionally been used
to explain how a lenslet array measures the distribution of light jointly
over space and spatial frequency. Here, we rigorously derive the connec-
tion between the intensity measured by a lenslet array and wave–optical
representations of such light distributions for partially coherent optical
beams by using the Wigner distribution function (WDF). It is shown that
the action of the lenslet array is to sample a smoothed version of the beam’s
WDF (SWDF). We consider the effect of lenslet geometry and coherence
properties of the beam on this measurement, and we derive an expression
for cross–talk between lenslets that corrupts the measurement. Conditions
for a high fidelity measurement of the SWDF and the discrepancies between
the measured SWDF and the WDF are investigated for a Schell–model
beam.
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1. Introduction

In order to extract the most information possible from an optical field, one can look for complete
descriptions of the wave properties of a field that allow physically measurable quantities (e.g.
intensity, energy density, Poynting vector) to be calculated over a region of free space. For most
propagating optical fields, a description on some plane transverse to the optical axis is sufficient
to determine the rest of the field; we will denote position on the plane by r = (x,y) and position
along the optical axis by z. For monochromatic coherent light, the complex–valued field U(r;z)
provides such a description. For a quasi–monochromatic partially coherent field, a common
description is the mutual intensity, J(r1,r2;z), i.e. the statistical correlation of the field at all
possible pairs of points over a plane [1]. The mutual intensity can be written as

J(r1,r2;z) = 〈U(r1;z)U∗(r2;z)〉 , (1)

where 〈·〉 denotes the ensemble average over statistical realizations of the field U , and the
intensity is simply given by I(r) = J(r,r).

The mutual intensity may be measured directly by using interferometry: two sheared versions
of a field are overlapped in a Young [2], Michelson stellar [3] or rotational shear [4,5] arrange-
ment, and the fringe visibility gives the mutual intensity. However, interferometric methods
are subject to mechanical scanning stability and signal–to–noise limitations. Other techniques
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use the fact that the intensity at any point in space may be computed from a pair of propaga-
tion integrals acting on J. By measuring the intensity over many different defocused planes,
these integrals may be inverted to recover J through a process known as phase space tomogra-
phy [6–11].

An alternative to the mutual intensity for describing an optical field is the radiance, a function
that characterizes the distribution of power over position and direction. Let the radiance at
some plane z be denoted by B(r,p;z) where p = (px, py) is the transverse component of the
unit direction vector. Propagation of radiance is based on geometric optics and is simple to
calculate:

B(r,p;z) = B(r− zp,p;0). (2)

The intensity at any point is given by the integral of B over all directions

I(r;z) =
∫

B(r,p;z)d2p =
∫

B(r− zp,p;0)d2p. (3)

Use of the radiance predates the wave theory of light, and it was initially described by assign-
ing non-negative values to all trajectories coming from source points. Such descriptions are
insufficient to model wave effects since these trajectories contain no information about con-
structive or destructive interference. However, in certain situations, these wave effects can be
safely ignored, and a lenslet array can then be used to obtain an estimate for the radiance since
they allow joint measurement of the spatial and directional distribution of light, as in Shack-
Hartmann sensors [12], integral imaging systems [13–15] and light field cameras [16, 17].

More recently, generalized radiance functions have been proposed that describe interference
while satisfying Eqs. (2) and (3); B is allowed to become negative to account for destructive
interference, and it is also allowed to have non–zero values outside of the source [18]. The
generalized radiance and mutual intensity both contain equivalent information: when defined
over a plane, they are 4D functions that fully describe the intensity of an optical field (including
wave effects) over a region of free space. In fact, for a quasi–monochromatic paraxial field of
mean wavelength λ , the two descriptions are related by a simple Fourier transform relation-
ship [19–21]:

1
λ 2 B(r,λu) = W (r,u) =

∫
J(r+ r′/2,r− r′/2)e−i2πu·r′d2r′, (4)

where W is known as the Wigner distribution function (WDF); it is related to the radiance by a
change of variables from transverse direction vector p to spatial frequency u = (ux,uy) = p/λ .
From Eq. (4), it is evident that if W is known, an inverse Fourier transform can be used to
obtain the mutual intensity.

In this manuscript we will show that not only can lenslet arrays measure radiance in the
geometric optics sense, they can also provide information about the WDF when wave optics
is considered. In order to understand how a lenslet array measurement relates to the WDF, we
first consider a single lenslet centered at position r0 and placed one focal length f away from
a detector [22]. The effect of the lenslet’s aperture is to window a portion of the incident field
centered at r0. The intensity I(r) at the detector plane measures a spatial frequency distribution
of the windowed field due to the Fourier transforming property of the lenslet. As illustrated in
Appendix A, I(r) is related to the incident WDF Wi and the aperture WDF Wp by

I(r) =
1

λ f
S[Wi,Wp](r0,u), (5)

where spatial frequency u is mapped to position r at the detector plane according to
u = (r− r0)/λ f , and S[W1,W2](r,u) denotes a smoothed WDF (SWDF) defined over space
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Fig. 1. Illustration of the measurement under a single lenslet of the SWDF in one spatial
dimension (r0 = x0 and u = ux). (a) A lenslet centered at x0 maps points (x0,ux) in the
SWDF domain to positions x0 +λ f ux at the lenslet’s Fourier plane. (b) A convolution of
the aperture WDF with the incident WDF forms the SWDF.

and spatial frequency variables r and u, respectively, constructed from a convolution between
the two WDFs W1 and W2 enclosed in the square brackets [22–26]:

S[W1,W2](r,u) =
∫

W1(r′,u′)W2(r′ − r,u−u′)d2r′d2u′. (6)

Equation 5 implies that for a lenslet centered at r0 the detector pixel at r corresponds to the
unique point at [r0,(r− r0)/λ f ] of the SWDF, as illustrated in Fig. 1(a). In order to fully
measure the SWDF, one could scan the lenslet and take multiple images [24, 26].

Since our goal is to accurately measure the incident WDF, we can interpret the construction
of the SWDF in Eq. (5) as smoothing the incident WDF by convolution with the aperture
WDF, as illustrated in Fig. 1(b). Ideally, then, one would seek to use an aperture for which
Wp ∝ δ (r)δ (u), where δ is the Dirac delta function in order to measure the incident WDF with
perfect resolution. However it may be easily verified from Eq. (4) that the existence of this
aperture WDF is physically impossible; uncertainty relationships place limits on the product of
the widths of Wp in space and spatial frequency. The finite extent of Wp limits the resolution in
space and spatial frequency of the measurement of Wi. Despite these limitations, in many cases
the SWDF itself is useful to provide a direct estimate of the WDF [24, 26]. However, if the
exact WDF is required, Eq. (6) shows that the recovery of the WDF from the SWDF generally
requires deconvolution [25].

A periodic array of lenslets enables measurements of different r0 simultaneously and re-
moves the need to scan. The advantage of using a lenslet array is that a detector pixel under
a given lenslet at position r0 measures a point (r0,u) in the SWDF domain according to the
mapping shown in Fig. 1(a). Therefore the geometry of an array of lenslets can be tailored to
measure a desired region of the SWDF domain. In section 2 we rigorously derive the relation-
ship between measured intensity and the SWDF of the incident field for an array of lenslets.
For simplicity, we consider scalar fields in one spatial dimension. We demonstrate that, in gen-
eral, the unique mapping implied by Eq. (5) no longer holds. We show that the intensity at a
detector pixel in general contains light from multiple lenslets which we call cross–talk. Ac-
curate measurement of the SWDF requires minimizing this cross–talk. In addition, both fully
incoherent and fully coherent cases can have considerable amounts of cross–talk. In Section 3,
we illustrate tradeoffs between coherence and fidelity using a numerical example, showing that
there exists an optimal “Goldilocks” regime for array pitch, given the the coherence width of
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Fig. 2. Lenslet array geometry.

the input light, such that cross–talk is reduced to a minimum without the need for additional
barriers to block light between lenslets. It is in this optimal regime that each detector pixel
corresponds to a single point in the SWDF domain, allowing lenslet array systems to measure
the SWDF with high accuracy. Since our goal is direct measurement of the field’s coherence
properties, we also consider the discrepancy between the SWDF and WDF for this example.

2. Theory

We now present a rigorous analysis of a 1D field passing through a 1D lenslet array. This anal-
ysis can be easily extended to a 2D rectangular array; other configurations, such as a 2D hexag-
onal array, require straightforward modifications. Consider a quasi–monochromatic paraxial
field with wavelength λ incident upon an ideal lenslet array with 100% fill factor, as illustrated
in Fig. 2. A detector is placed at the back focal plane of the lenslet array, and we will refer to
the region directly behind each lenslet on the detector as that lenslet’s detector cell. We assume
an array of 2N + 1 identical unaberrated thin lenses, each of width w and focal length f . The
transmittance function of such an array is given by

T (x) =
N

∑
l=−N

rect

(
x− lw

w

)
exp

[
− iπ

λ f
(x− lw)2

]
, (7)

where rect(·) denotes a rectangular function. In this configuration, we assign an integer index l
to each lenslet, with the center lenslet having index l = 0; the N lenslets above and N lenslets
below the center lenslet take on positive and negative values of l, respectively. Thus, the center
of each lenslet is located at x = lw. We have assumed an odd number of lenslets to simplify
notation, although the results we obtain can easily be extended to an even number of lenslets.

The mutual intensity immediately to the right of the lenslet array is [1]

J1

(
x̄+

x′

2
, x̄− x′

2

)
= Ji

(
x̄+

x′

2
, x̄− x′

2

)
T

(
x̄+

x′

2

)
T ∗

(
x̄− x′

2

)
, (8)

where x̄ and x′ are the center and difference coordinates, respectively, Ji is the mutual intensity
of the illumination immediately before the lenslet array; the subscript i indicates that its asso-
ciated function describes properties of the incident field at the input plane, and we will use this
notation through the rest of the manuscript.
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As a stepping stone to the full relationship between the incident field and the observed inten-
sity behind the lenslet array, we will first consider a simpler system wherein we scan through
the lenslets. That is, instead of letting light pass simultaneously through all the lenslets while
recording the intensity image, we only let light pass through one lenslet at a time, cycling
through all the lenslets while still recording a single image. This removes the effect of cross–
lenslet interference, whose derivation we will consider later.

According to Eq. (5), each measurement samples the SWDF over spatial frequency with
position fixed at the lenslet’s center, lw. The aperture of each lenslet is a rect function of width
w, and thus the aperture WDF is given by

Wp(x,u) =
sin[2πu(w−2|x|)]

πu
rect

( x
w

)
(9)

The total intensity at the detector plane is given by

I0(xo) =
1

λ f

N

∑
l=−N

S[Wi,Wp]

(
lw,

xo − lw
λ f

)
. (10)

where 1
λ f S[Wi,Wp]

(
lw, xo−lw

λ f

)
is the contribution of light through a single lenslet.

It is clear from this equation that the SWDF is sampled spatially at intervals of w, the spacing
of the lenslet centers. The sampling rate along the spatial frequency axis in the SWDF is deter-
mined by both the detector pixel size and the linear mapping u=(xo− lw)/λ f between detector
coordinate xo and spatial frequency coordinate u. The mapping can be explained by the fact that
(xo− lw)/ f equals to the angle between the ray reaching the detector pixel at xo and the optical
axis of the lth lenslet under a small angle approximation. Note that if the angular spread of the
SWDF is large enough, each detector cell will include contributions to intensity not only from
the SWDF associated with its lenslet, but also from neighboring lenslets. This can be prevented
by increasing the size of the lenslets or by decreasing the angular spread of the incident field by
placing either a main lens with finite numerical aperture in front of the array [17] or physical
barriers between lenslets [27]. If we assume that each detector cell measures only light from its
associated lenslet, then we would have a detected intensity of the following form

ISWDF(xo) =
1

λ f

N

∑
l=−N

S[Wi,Wp]

(
lw,

xo − lw
λ f

)
rect

(
xo − lw

w

)
. (11)

We refer to this expression as ISWDF, because the intensity measured at xo maps uniquely to the
point [l̂w,(xo − l̂w)/λ f ] in the SWDF, where l̂ is xo/w rounded to the nearest integer.

The difference between Eq. (10) and Eq. (11) yields what we will call the 0th order cross–talk

term I(0)c :

I(0)c (xo) =
1

λ f

N

∑
l=−N

S[Wi,Wp]

(
lw,

xo − lw
λ f

)[
1− rect

(
xo − lw

w

)]
. (12)

This term describes the additional light from other lenslets if the previous assumption were to
not hold. In this situation multiple points in the SWDF can contribute to the same point on the
detector.

To demonstrate the sampling described by Eqs. (10)–(12), an array containing three lenslets
(centered at −w,0,w) is shown in Fig. 3. According to Eq. (10), three lines sampled at spatial
coordinates −w,0,w parallel to the u–axis from the SWDF are mapped to the detector plane
(marked by different colors in Fig. 3). To ensure one–to–one mapping, the maximum spatial
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Fig. 3. Sampling of the SWDF using an array of three lenslets. (a) One–to–one mapping
from the SWDF to the detector coordinate according to u = (xo − lw)/(λ f ) as the angular
spread of the SWDF is narrower than the numerical aperture of a lenslet. (b) Multiple points
in the SWDF domain contribute to detector pixels in the cross–talk region as the angular
spread of the incident field is wider than the numerical aperture of a lenslet, which produces
the 0th order cross–talk.

frequency um of the lth line sample cannot exceed w/2λ f , as shown in case (a); otherwise,
points at (lw,um) and [(l+1)w,um−w/(λ f )] from the SWDF domain will be measured by the
same detector pixel at xo = lw+λ f um, as shown in case (b).

So far, we have only considered the incoherent superposition of light from all of the lenslets,
whereas light passing through all of the lenslets simultaneously should create additional inter-
ference terms. Since light from lenslets separated by a distance greater than the incident field’s
coherence width will not create appreciable interference when mixed, it is useful to enumerate
these cross–talk terms with an index n proportional to the lenslet separation. All possible pairs
of lenslets with indices l′ and l′′ such that |l′ − l′′|= n > 0 contribute to the nth order cross–talk

term I(n)c , given by

I(n)c (xo)=
2

λ f

N− n
2

∑
l=−N+ n

2

∫∫
Wi(x̄,u)Wp

(
x̄−lw,u− xo−lw

λ f

)
cos

[
2π

(
x−xo

λ f
+u

)
nw

]
dx̄du. (13)

Note that when n is odd, l takes a value halfway between two integers, and thus Wp is centered
at the edge between the (l−1/2)th and (l+1/2)th lenslets; when n is even, l takes every integer
value, thus Wp is centered at the lth lenslet. We expect the n = 1 term to be significant even in
highly incoherent fields, since some points near the boundary between two neighboring lenslets
are expected to be within the coherence width of the field.

The total output intensity, considering all of the discussed effects, can be written as the sum
of three components

I(xo) = ISWDF(xo)+ I(0)c (xo)+
2N

∑
n=1

I(n)c (xo). (14)

A detailed derivation of this result, obtained by performing Fresnel propagation integrals on
Eq. (8), is given in Appendix B. Equation 14 demonstrates that if all orders of the cross–talk
could be made small, then the measured intensity would be an accurate representation of the
SWDF. In order for the cross–talk to be negligible, both the angular spread of the SWDF should
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be small [for I(0)c (xo)] and the coherence width should be less than the width of a single lenslet

[for I(n)c (xo)]. In order to optimally measure the SWDF, the angular and coherence widths of the
SWDF should be balanced so that as much of each lenslet’s detector cell is utilized as possible
while minimizing cross–talk. It should also be noted that even with minimal cross–talk, the
measurement yields only the SWDF; recovery of the mutual intensity (or WDF) of the field
still requires deconvolution of the SWDF with the aperture WDF.

3. Numerical example

We study the effect of coherence width on the quality of the resulting measurement by the
following example. Let us consider a spatially homogeneous incident field of wide enough
spatial extent compared to the width of the lenslet array that it can be approximated as infinitely
wide. The transverse coherence of the field is described using a Gaussian–correlated Schell
model, such that the mutual intensity is

Ji(x1,x2) = exp

[
− (x2 − x1)

2

2σ2
c

]
. (15)

The coherence width is proportional to the standard deviation σc of the coherence term. The
WDF of the incident field is therefore independent of x̄ and is given by

Wi(x̄,u) =
1√

2πσu
exp

[
− u2

2σ2
u

]
, (16)

where σu = 1/(2πσc) quantifies the spatial frequency bandwidth of the WDF and is propor-
tional to the angular spread of the field. The SWDF resulting from the convolution between the
WDF of the input field and that of a rectangular aperture is

S[Wi,Wp](x̄,u) =
w2

√
2πσu

∫
exp

[
− (u−u′)2

2σ2
u

][
sin(πwu′)

πwu′

]2

du′. (17)

Therefore the SWDF term is

ISWDF(xo) =
w2

√
2πσuλ f

N

∑
l=−N

rect

(
xo − lw

w

)∫
exp

{
− [(xo − lw)/λ f −u′]2

2σ2
u

}

[
sin(πwu′)

πwu′

]2

du′, (18)

and the 0th order cross–talk term is

I(0)c (xo) =
w2

√
2πσuλ f

N

∑
l=−N

[
1− rect

(
xo − lw

w

)]

∫
exp

{
− [(xo − lw)/λ f −u′]2

2σ2
u

}[
sin(πwu′)

πwu′

]2

du′. (19)

The nth order cross–talk term by carrying out the integration in Eq. (13) is

I(n)c (xo) =
2w2

√
2πσuλ f

N− n
2

∑
l=−N+ n

2

∫
exp

{
− [(xo − lw)/λ f −u′]2

2σ2
u

}
cos(2πnwu′)

sin[πw(nu0 +2u′)/2]
πw(nu0 +2u′)/2

sin[πw(nu0 −2u′)/2]
πw(nu0 −2u′)/2

du′, (20)
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where u0 = w/λ f is the spatial frequency support of a single lenslet. The total output intensity
measured at a detector pixel will be the sum of the SWDF and all cross–talk terms, as given in
Eq. (14).

Three different cases with varying coherence widths are simulated based on the results in
Eqs. (17)–(20). In the simulation, the wavelength of the incident field is 500nm. Five lenslets
are used in the array, each having width w= 330μm and focal length f = 5mm, yielding spatial
frequency support of u0 = 0.132μm−1. The simulation results are shown in Fig. 4. For all three
cases, the total output intensity in row (a) is composed of the SWDF term in row (b) and the total
contribution of cross–talk in row (c). The total cross–talk is further analyzed by decomposing
it as the 0th order term in row (d) and the total of higher order terms in row (e). Simulations on
arrays with larger numbers of lenslets were also conducted; results are not shown here because
they are very similar to the ones in Fig. 4.

In the highly incoherent case shown in the left column (σc = 0.01w), higher order cross–talk
is minimal. However, due to the large angular spread in the incident field, the measurement is
corrupted by 0th order cross–talk. The opposite is the highly coherent case, shown in the middle
column (σc = 20w). Here, most of the cross–talk comes from higher order terms. The results
for a partially coherent field (σc = 0.1w) is shown in the right column; cross–talk contributes
minimally to the final intensity, although both 0th order and higher order terms are present.

Notice that although the SWDF itself is homogeneous in x, the intensities measured in Fig. 4
are not identical under each lenslet. The reason for this is cross–talk. As expressed in Eq. (14)
cross–talk under a given lenslet results from the light from neighboring lenslets. The number
of neighboring lenslets contributing to the cross–talk depends on both the coherence width of
the field and on the angular spread of the field. For a lenslet near the edge of the array, there are
few neighbors in the direction of the edge, meaning less cross–talk from that direction. Since
our simulated lenslet array consists of only 5 lenslets for simplicity, at least 2 of the lenslets are
“edge lenslets,” and depending on the coherence width and angular spread, edge effects may
influence all lenslets. Practical lenslet arrays are likely to contain considerably more lenslets,
and generally most lenslets will have minimal contributions from edge effects. Because of this,
in comparing measured intensity to the WDF and SWDF of the incident field, we consider only
the intensity under the central lenslet in our simulated array.

The spatial position under the central lenslet maps into the SWDF domain according to
(x = 0,u = xo/λ f ). In Fig. 5 we compare the total output intensity under the central lenslet
(dotted green lines) to the corresponding slice (u = xo/λ f ) of the SWDF (dashed blue lines)
for each of the three simulated fields. The matching slice of the WDF (solid red lines) illus-
trates the effect of aperture convolution that generates the SWDF. In both the highly incoherent
and partially coherent cases, the SWDF and WDF are very similar, since the WDF of the aper-
ture is much smaller than any variations in the incident WDFs. In the highly coherent case,
the incident WDF is narrower in u than the aperture WDF, and therefore the SWDF is signifi-
cantly broadened by the convolution. In order to recover the WDF from the measured intensity,
deconvolution is necessary [25].

We quantify how close the lenslet measurement is to the WDF of the incident field by com-
paring the total output intensity under the central lenslet to the incident WDF at those (x,u)
coordinates using an error metric Rerror:

Rerror =
|total output intensity− incident WDF|2

|total output intensity|2 . (21)

The total output intensity contains contributions both from the SWDF and from cross–talk. To
compare the relative importance of these contributions, we quantify the cross–talk corruption
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Fig. 4. Left: highly incoherent; middle: highly coherent; and right: partially coherent case.
(a) Total output intensity is composed of (b) SWDF term and (c) total contribution from
cross–talk terms. The total cross–talk is composed of (d) 0th order cross–talk and (e) total
of higher order cross–talk. All the intensities are normalized to the maximum value in the
total output. The horizontal axis is the spatial coordinate normalized by the width of a
lenslet.
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Fig. 5. Comparison of WDF (solid red line), SWDF (dashed blue lines) and total output
intensity (dotted green lines) for (a) highly incoherent (σc = 0.01w), (b) highly coherent
(σc = 20w), and (c) partially coherent (σc = 0.1w) incident light.

in the output through the cross–talk intensity fraction Rcross–talk as

Rcross–talk =
|total intensity in all terms of cross–talk|2

|total output intensity|2 . (22)

The SWDF itself is a smoothed version of the incident WDF. To quantify the discrepancy due
to this smoothing, we define the convolution error Rconv as

Rconv =
|SWDF− incident WDF|2
|total output intensity|2 . (23)

All these error metrics are plotted as functions of the coherence width of the incident field
normalized to the lenslet width (σc/w) in Fig. 6. As seen in the dashed green curve, the con-
tribution from cross–talk increases quickly as the field becomes less coherent. When the field
becomes more coherent, the contribution from cross–talk also increases until it saturates to
the point in which the field is coherent within the whole array. There exists a partially coher-
ent regime where the SWDF can be measured with minimal cross–talk corruption. Depending
on accuracy requirements, this regime may provide acceptable measurements. For example,
if less than 1% of cross–talk can be tolerated, then the coherence width should be such that
0.02w < σc < w. On the other hand, the convolution error increases as the field becomes more
coherent, making the SWDF a less accurate estimate of the WDF in these situations. Rerror

considers artifacts from both cross–talk and convolution, has a similar shape to the cross–talk
curve. The measurement deviates from the original WDF except in a partially coherent region.
If error needs to be at most 1%, then we would need 0.02w < σc < 0.4w.

4. Concluding Remarks

Although the numerical example was chosen explicitly to consider the effect of coherence width
on the measurement of the SWDF using a lenslet array, this simple model can also provide
useful insights for a much broader class of fields whose intensity varies slowly across the field,
with features much wider than the coherence width. As a rule of thumb, higher order (coherent)
cross–talk can be reduced by ensuring that the lenslet apertures are at least one coherence
width in size. This makes intuitive sense, since an aperture larger than the coherence width
will not cause the incident beam to diffract significantly, and any light that is diffracted from
the aperture will not interfere with that from neighboring lenslets. Both 0th and higher order
cross–talk can be reduced by ensuring the incident illumination’s angular spread is such that
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Fig. 6. Rerror in solid blue curve, cross–talk intensity fraction Rcross–talk in dashed green
curve, and convolution error Rconv in red dotted curve as functions of the normalized co-
herence length of incident light σc/w.

each lenslet primarily illuminates only the pixels lying within its detector cell, such that there
is a nearly one–to–one mapping from SWDF space to each detector pixel.

It should also be noted that we have derived these results under the paraxial approximation
and that both the 0th and higher order cross–talk can include contributions for which the light
propagates highly non–paraxially from one lenslet to its neighbors. In these cases, we expect
that a similar analysis can be performed using non–paraxial versions of the Wigner function [28,
29], although this is outside the scope of our current work.

As was discussed while analyzing the example, there are cases where the SWDF is not an ac-
curate estimate of the WDF. As illustrated in Fig. 1(b), the SWDF can be interpreted as blurring
the incident field’s WDF by convolution with the aperture WDF. The problem of recovering the
incident WDF is therefore similar to improving the resolution of an optical imaging system
through deconvolution. We therefore expect there to be significant difficulties especially when
the incident WDF contains features smaller than the aperture WDF. Performing deconvolution
to recover the WDF may benefit from techniques such as coded apertures [30, 31] and com-
pressed sensing [10, 32].

Appendix A: Derivation of Eqs. (5) and (6)

Consider an incident field with mutual intensity Ji passing through a lenslet centered at r0

whose aperture function is given by p. The mutual intensity immediately after the lenslet is

J

(
r+

r′

2
,r− r′

2

)
= Ji

(
r+

r′

2
,r− r′

2

)
T

(
r+

r′

2

)
T ∗

(
r− r′

2

)
, (24)

where T (r) = p(r− r0)exp[−iπ|r− r0|2/(λ f )] is the transmittance function of the lenslet. It
is straightforward to verify that the WDF of the product of two mutual intensities is equivalent
to the convolution along u of the WDFs of the two mutual intensities. Using this property of
WDFs, we can express the WDF immediately after the lenslet Wo as:

Wo(r,u) =
∫

Wi(r,u′)WT(r,u−u′)d2u′, (25)

where WT is the WDF of the transmittance function and all WDFs described here are in the
lenslet plane. Propagation to the detector plane at z = f is performed using Eq. (2), such that
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the detector plane WDF Wd is given by

Wd(r,u) = Wo(r−λ f u,u) =
∫

Wi(r−λ f u,u′)WT
(
r−λ f u,u−u′) d2u′. (26)

By using the definition of T and Eq. (4), WT is related to the aperture WDF Wp by

WT(r,u) = Wp

(
r− r0,

r− r0

λ f
+u

)
, (27)

which can be substituted into Eq. (26) to yield

Wd(r,u) =
∫

Wi(r−λ f u,u′)Wp

(
r−λ f u− r0,

r− r0

λ f
−u′

)
d2u′. (28)

The intensity at the detector plane is given by an integral of Wd over u [Eq. (3)], yielding

I(r) =
∫

Wi(r−λ f u,u′)Wp

(
r−λ f u− r0,

r− r0

λ f
−u′

)
d2u′ d2u, (29)

which proves Eqs. (5) and (6).

Appendix B: Proof of Eq. (14)

The intensity at the output plane xo at one focal length to the right of the lenslet array is related
to J1 by double Fresnel integrals under the paraxial approximation,

I(xo) =
1

λ f

∫∫
J1(x1,x2)exp

{
iπ
λ f

[
(xo − x1)

2 − (xo − x2)
2]}dx1dx2. (30)

Substitutions of Eqs. (7) and (8) into Eq. (30) shows that the calculation of I(xo) requires in
general carrying out double summations with respect to different lenslet indices l1 and l2. After
some simplification, the output intensity is rewritten as

I(xo) =
1

λ f

N

∑
l1=−N

N

∑
l2=−N

∫∫
Ji(x1,x2)rect

(
x1 − l1w

w

)
rect

(
x2 − l2w

w

)

exp

{
−i

2π
λ f

[
(l2

1 − l2
2)

w2

2
+(x1 − x2)xo − l1wx1 + l2wx2

]}
dx1dx2. (31)

The double summations are simply due to the fact that the intensity at the region directly behind
a particular lenslet results from both the field passing through the local lenslet and cross–talk
from the field passing through neighboring lenslets. We proceed with the derivation by the
change of variables

x̄ =
x1 + x2

2
, x′ = x1 − x2, (32)

and
m = l1 + l2, n = l1 − l2. (33)

The consequence of the change of variables in Eq. (33) can be studied as follows.
a) When n is even, we can write

n = 2q, where q =−N,−N +1, ...,N −1,N; (34)
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and since n = l1 − l2, we can assume

l1 = l+q, l2 = l−q, (35)

and
m = 2l, where l =−N + |q|,−N + |q|+1, ...,N −|q|−1,N −|q|. (36)

b) When n is odd, we can again write

n = 2q, where q =−N +
1
2
,−N +

3
2
, ...,N − 3

2
,N − 1

2
, (37)

and
l1 = l+q, l2 = l−q, (38)

with
m = 2l, where l =−N + |q|,−N + |q|+1, ...,N −|q|−1,N −|q|. (39)

The substitution of the change of variables leads

I(xo) =
1

λ f

2N

∑
n=−2N

even

N− |n|
2

∑
l=−N+

|n|
2

∫∫
rect

(
x̄− lw+(x′ −nw)/2

w

)
rect

(
x̄− lw− (x′ −nw)/2

w

)

Ji

(
x̄+

x′

2
, x̄− x′

2

)
exp

[
−i

2π
λ f

(xo − lw)x′+ i
2π
λ f

(x̄− lw)nw

]
dx̄dx′

+
1

λ f

2N−1

∑
n=−2N+1

odd

N− |n|
2

∑
l=−N+

|n|
2

∫∫
rect

(
x̄− lw+(x′ −nw)/2

w

)
rect

(
x̄− lw− (x′ −nw)/2

w

)

Ji

(
x̄+

x′

2
, x̄− x′

2

)
exp

[
−i

2π
λ f

(xo − lw)x′+ i
2π
λ f

(x̄− lw)nw

]
dx̄dx′. (40)

Notice that a term of fixed n contributes a non–zero value to I(xo) only if the two rect–functions
overlap. This implies that the separation x′ between the pair of correlating points on the incident
field can only take certain values, as determined by the following inequalities

|x̄− lw|< w/4, (41)

(n−1)w+2|x̄− lw|< x′ < (n+1)w−2|x̄− lw|. (42)

Eq. (42) implies that x′ is bounded to a region of width 2w− 4|x̄− lw| centered at nw. Also
recall that the magnitude of mutual intensity is significantly larger than zero at large separation
distance x′ only if the field is highly coherent. This implies that more terms in the summation
over n need to be considered if the field is more coherent. To simplify Eq. (40), we relate I(xo)
to the WDF of the incident field and the WDF Wp(x̄,u) of a rectangular aperture of width w, by
completing the integration with respect to x′ to yield

I(xo) =
1

λ f{
2N−1

∑
n=−2N+1

odd

N− |n|
2

∑
l=−N+

|n|
2

∫∫
Wi(x̄,u)Wp

(
x̄− lw,u− xo − lw

λ f

)
exp

[
i2π

(
x̄− xo

λ f
+u

)
nw

]
dx̄du

+
2N

∑
n=−2N

even

N− |n|
2

∑
l=−N+

|n|
2

∫∫
Wi(x̄,u)Wp

(
x̄− lw,u− xo − lw

λ f

)
exp

[
i2π

(
x̄− xo

λ f
+u

)
nw

]
dx̄du.

}
(43)

Finally, by combining the complex conjugate terms in n, we arrive at Eq. (14).
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